Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfacial microemulsions

Lattice models for bulk mixtures have mostly been designed to describe features which are characteristic of systems with low amphiphile content. In particular, models for ternary oil/water/amphiphile systems are challenged to reproduce the reduction of the interfacial tension between water and oil in the presence of amphiphiles, and the existence of a structured disordered phase (a microemulsion) which coexists with an oil-rich and a water-rich phase. We recall that a structured phase is one in which correlation functions show oscillating behavior. Ordered lamellar phases have also been studied, but they are much more influenced by lattice artefacts here than in the case of the chain models. [Pg.656]

It is now believed from studies on the natural photosynthetic systems that microenvironments for the photoinduced ET reaction play an important role in the suppression of the back ET [1-3]. As such reaction environments, molecular assembly systems such as micelles [4], liposomes [5], microemulsions [6-8] and colloids [9] have been extensively investigated. In them, the presence of microscopically heterogeneous phases and interfacial electrostatic potential is the key to the ET rate control. [Pg.52]

By small-angle neutron scattering experiments on water/AOT/hydrocarbon microemulsions containing various additives, the change of the radius of the miceUar core with the addition of small quantities of additives has been investigated. The results are consistent with a model in which amphiphilic molecules such as benzyl alcohol and octanol are preferentially adsorbed into the water/surfactant interfacial region, decreasing the micellar radius, whereas toluene remains predominantly in the bulk hydrocarbon phase. The effect of n-alcohols on the stability of microemulsions has also been reported [119],... [Pg.485]

Since some structural and dynamic features of w/o microemulsions are similar to those of cellular membranes, such as dominance of interfacial effects and coexistence of spatially separated hydrophilic and hydrophobic nanoscopic domains, the formation of nanoparticles of some inorganic salts in microemulsions could be a very simple and realistic way to model or to mimic some aspects of biomineralization processes [216,217]. [Pg.491]

The phase inversion temperature (PIT) method is helpful when ethoxylated nonionic surfactants are used to obtain an oil-and-water emulsion. Heating the emulsion inverts it to a water-and-oil emulsion at a critical temperature. When the droplet size and interfacial tension reach a minimum, and upon cooling while stirring, it turns to a stable oil-and-water microemulsion form. " ... [Pg.315]

The rates of multiphase reactions are often controlled by mass tran.sfer across the interface. An enlargement of the interfacial surface area can then speed up reactions and also affect selectivity. Formation of micelles (these are aggregates of surfactants, typically 400-800 nm in size, which can solubilize large quantities of hydrophobic substance) can lead to an enormous increase of the interfacial area, even at low concentrations. A qualitatively similar effect can be reached if microemulsions or hydrotropes are created. Microemulsions are colloidal dispersions that consist of monodisperse droplets of water-in-oil or oil-in-water, which are thermodynamically stable. Typically, droplets are 10 to 100 pm in diameter. Hydrotropes are substances like toluene/xylene/cumene sulphonic acids or their Na/K salts, glycol.s, urea, etc. These. substances are highly soluble in water and enormously increase the solubility of sparingly. soluble solutes. [Pg.9]

Tjandra et al. (1998) have proposed an interfacial reaction model for the kinetics of the reaction between 1-bromo octane and sodium phenoxide to give 1-phenoxyoctane in a nonionic microemulsion. In this model the microemulsion is assumed to consist of the aqueous phase and the interface is covered by a monolayer of surfactant molecules. It is thus possible to assess the interfacial area from the concentration of the surfactant in the microemulsion medium. [Pg.151]

As mentioned earlier, a great deal of literature has dealt with the properties of heterogeneous liquid systems such as microemulsions, micelles, vesicles, and lipid bilayers in photosynthetic processes [114,115,119]. At externally polarizable ITIES, the control on the Galvani potential difference offers an extra variable, which allows tuning reaction paths and rates. For instance, the rather high interfacial reactivity of photoexcited porphyrin species has proved to be able to promote processes such as the one shown in Fig. 3(b). The inhibition of back ET upon addition of hexacyanoferrate in the photoreaction of Fig. 17 is an example of a photosynthetic reaction at polarizable ITIES [87,166]. At Galvani potential differences close to 0 V, a direct redox reaction involving an equimolar ratio of the hexacyanoferrate couple and TCNQ features an uphill ET of approximately 0.10 eV (see Fig. 4). However, the excited state of the porphyrin heterodimer can readily inject an electron into TCNQ and subsequently receive an electron from ferrocyanide. For illumination at 543 nm (2.3 eV), the overall photoprocess corresponds to a 4% conversion efficiency. [Pg.227]

Electrochemical redox studies of electroactive species solubilized in the water core of reverse microemulsions of water, toluene, cosurfactant, and AOT [28,29] have illustrated a percolation phenomenon in faradaic electron transfer. This phenomenon was observed when the cosurfactant used was acrylamide or other primary amide [28,30]. The oxidation or reduction chemistry appeared to switch on when cosurfactant chemical potential was raised above a certain threshold value. This switching phenomenon was later confirmed to coincide with percolation in electrical conductivity [31], as suggested by earlier work from the group of Francoise Candau [32]. The explanations for this amide-cosurfactant-induced percolation center around increases in interfacial flexibility [32] and increased disorder in surfactant chain packing [33]. These increases in flexibility and disorder appear to lead to increased interdroplet attraction, coalescence, and cluster formation. [Pg.252]

The ITIES with an adsorbed monolayer of surfactant has been studied as a model system of the interface between microphases in a bicontinuous microemulsion [39]. This latter system has important applications in electrochemical synthesis and catalysis [88-92]. Quantitative measurements of the kinetics of electrochemical processes in microemulsions are difficult to perform directly, due to uncertainties in the area over which the organic and aqueous reactants contact. The SECM feedback mode allowed the rate of catalytic reduction of tra 5-l,2-dibromocyclohexane in benzonitrile by the Co(I) form of vitamin B12, generated electrochemically in an aqueous phase to be measured as a function of interfacial potential drop and adsorbed surfactants [39]. It was found that the reaction at the ITIES could not be interpreted as a simple second-order process. In the absence of surfactant at the ITIES the overall rate of the interfacial reaction was virtually independent of the potential drop across the interface and a similar rate constant was obtained when a cationic surfactant (didodecyldimethylammonium bromide) was adsorbed at the ITIES. In contrast a threefold decrease in the rate constant was observed when an anionic surfactant (dihexadecyl phosphate) was used. [Pg.321]

The majority of RDC studies have concentrated on the measurement of solute transfer resistances, in particular, focusing on their relevance as model systems for drug transfer across skin [14,39-41]. In these studies, isopropyl myristate is commonly used as a solvent, since it is considered to serve as a model compound for skin lipids. However, it has since been reported that the true interfacial kinetics cannot be resolved with the RDC due to the severe mass transport limitations inherent in the technique [15]. The RDC has also been used to study more complicated interfacial processes such as kinetics in a microemulsion system [42], where one of the compartments contains an emulsion. [Pg.340]

Water-in-oil microemulsions (w/o-MEs), also known as reverse micelles, provide what appears to be a very unique and well-suited medium for solubilizing proteins, amino acids, and other biological molecules in a nonpolar medium. The medium consists of small aqueous-polar nanodroplets dispersed in an apolar bulk phase by surfactants (Fig. 1). Moreover, the droplet size is on the same order of magnitude as the encapsulated enzyme molecules. Typically, the medium is quite dynamic, with droplets spontaneously coalescing, exchanging materials, and reforming on the order of microseconds. Such small droplets yield a large amount of interfacial area. For many surfactants, the size of the dispersed aqueous nanodroplets is directly proportional to the water-surfactant mole ratio, also known as w. Several reviews have been written which provide more detailed discussion of the physical properties of microemulsions [1-3]. [Pg.472]

Fatty alcohol- (or alkyl-)ethoxylates, CoE, are considered to be better candidates for LLE based on their ability to induce rapid phase separation for Winsor II and III systems. (Winsor III systems consist of excess aqueous and organic phases, and a middle phase containing bicontinuous microemulsions.) However, C,E,-type surfactants alone cannot extract biomolecules, presumably because they have no net negative charge, in contrast to sorbitan esters [24,26,30,31]. But, when combined with an additional anionic surfactant such as AOT or sodium benzene dodecyl sulfonate (SDBS), or affinity surfactant, extraction readily occurs [30,31]. The second surfactant must be present beyond a minimum threshold value so that its interfacial concentration is sufficiently large to be seen by... [Pg.482]

Catalysis in Microemulsions Interfacial Infrared Vibrational Spectroscopy 17... [Pg.326]

Similar investigations have been carried out on water in oil microemulsions. A microemulsion is a clear, transparent, and stable system consisting of essentially monodisperse oil in water (OAV) or water in oU (W/O) droplets with diameters generally in the range of 10-200 nm. Microemulsions are transparent because of their small particle size, they are spherical aggregates of oil or water dispersed in the other liquid, and they are stabilized by an interfacial film of one or more surfactants. [Pg.319]

This transition may j-.e. reducing the specific surface energy, f. The reduction of f to sufficiently small values was accounted for by Ruckenstein (15) in terms of the so called dilution effect". Accumulation of surfactant and cosurfactant at the interface not only causes significant reduction in the interfacial tension, but also results in reduction of the chemical potential of surfactant and cosurfactant in bulk solution. The latter reduction may exceed the positive free energy caused by the total interfacial tension and hence the overall Ag of the system may become negative. Further analysis by Ruckenstein and Krishnan (16) have showed that micelle formation encountered with water soluble surfactants reduces the dilution effect as a result of the association of the the surfactants molecules. However, if a cosurfactant is added, it can reduce the interfacial tension by further adsorption and introduces a dilution effect. The treatment of Ruckenstein and Krishnan (16) also highlighted the role of interfacial tension in the formation of microemulsions. When the contribution of surfactant and cosurfactant adsorption is taken into account, the entropy of the drops becomes negligible and the interfacial tension does not need to attain ultralow values before stable microemulsions form. [Pg.159]

In the current literature one finds that the knowledge of interfacial tension, Yij> liquid -liquidj is of much importance in many different systems, emulsions, microemulsions, ehnanced oil... [Pg.329]

If one considers a system consisting of water (with or without added electrolyte) + oil + surfactant (with or without a cosurfactant) at equilibrium, there will most likely be present more than two phases (due to the formation of emulsion or microemulsion). The determination of the interfacial tension, Yij> between the two liquid phases is, therefore, of much importance, in order to understand the forces which stabilize these emulsions or microemulsions. The interfacial tension can be measured by using a variety of methods, as described in detail in surface chemistry text-books (1-3). If the magnitude of yij is of the order of few mN/m (=dyne/ cm), then the methods generally used are Wilhelmy plate method or the drop volume (or weight) method (1-4). However, in certain systems ultra-low (or low) interfacial tensions have been reported. Since these low values are reported to be essential in order to mo-... [Pg.329]


See other pages where Interfacial microemulsions is mentioned: [Pg.519]    [Pg.519]    [Pg.2376]    [Pg.2597]    [Pg.150]    [Pg.153]    [Pg.535]    [Pg.91]    [Pg.659]    [Pg.729]    [Pg.293]    [Pg.149]    [Pg.150]    [Pg.231]    [Pg.231]    [Pg.252]    [Pg.98]    [Pg.582]    [Pg.166]    [Pg.98]    [Pg.8]    [Pg.233]    [Pg.394]    [Pg.153]    [Pg.154]    [Pg.156]    [Pg.157]    [Pg.159]    [Pg.160]    [Pg.170]    [Pg.170]   
See also in sourсe #XX -- [ Pg.169 , Pg.170 , Pg.171 ]

See also in sourсe #XX -- [ Pg.138 , Pg.139 , Pg.141 ]




SEARCH



Interfacial curvature microemulsions

Interfacial free energy, microemulsion

Interfacial free energy, microemulsion thermodynamic theory

Interfacial tension in microemulsions

Microemulsions interfacial tensions

© 2024 chempedia.info