Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfacial free energy, microemulsion thermodynamic theory

Similar attempts were made by Likhtman et al. [13] and Reiss [14]. Reference 13 employed the ideal mixture expression for the entropy and Ref. 14 an expression derived previously by Reiss in his nucleation theory These authors added the interfacial free energy contribution to the entropic contribution. However, the free energy expressions of Refs. 13 and 14 do not provide a radius for which the free energy is minimum. An improved thermodynamic treatment was developed by Ruckenstein [15,16] and Overbeek [17] that included the chemical potentials in the expression of the free energy, since those potentials depend on the distribution of the surfactant and cosurfactant among the continuous, dispersed, and interfacial regions of the microemulsion. Ruckenstein and Krishnan [18] could explain, on the basis of the treatment in Refs. 15 and 16, the phase behavior of a three-component oil-water-nonionic surfactant system reported by Shinoda and Saito [19],... [Pg.267]

Several theories have been proposed to account for the thermodynamic stability of microemulsions. The most recent theories showed that the driving force for microemulsion formation is the ultralow interfacial tension (in the region of 10 4-10 2 mN m 1). This means that the energy required for formation of the interface (the large number of small droplets) A Ay is compensated by the entropy of dispersion —TAS, which means that the free energy of formation of microemulsions AG is zero or negative. [Pg.515]

Quantitative predictions of surfactant phase behavior can be made by constructing a thermodynamic model. The classical expression for the free energy of a microemulsion is a function of the interfacial tension, bending moment, and micelle-micelle interactions [47]. Two quantitative models have been developed to describe supercritical microemulsions based on this concept. Here, the key challenge is to find accurate expressions for the oil-surfactant tail interactions and the tail-tail interactions. To do this, the first model uses a modified Flory-Krigbaum theory [43,44], and the second a lattice fluid self-consistent field (SCF) theory [25]. [Pg.292]


See other pages where Interfacial free energy, microemulsion thermodynamic theory is mentioned: [Pg.1563]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Energy thermodynamics

Free energy microemulsion

Free energy microemulsions

Free energy thermodynamics

Free theory

Interfacial free energy

Interfacial free energy, microemulsion

Interfacial microemulsions

Interfacial thermodynamics

Microemulsions thermodynamic theory

Microemulsions thermodynamics

Thermodynamic energy

Thermodynamic theory

© 2024 chempedia.info