Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfaces, electrochemistry

Yu Runlan, Qiu Guanzhou, Hu Yuehua, Qin Wenqing, 2004e. Interface electrochemistry of interaction of collector with jamesonite. The Chinese Journal of Nonferrous Metals, 14(1) 127- 131 (in Chinese)... [Pg.285]

Bond, A.M., Feldberg, S.W., Miao, W., Oldham, K.B., and Raston, C.L. 2001. Modelling of solid-state, dissolution and solution-phase reactions at adhered solid-electrode-solvent (electrolyte) interfaces, electrochemistry of microcrystals of adhered to an electrode in contact with dichloromethane (Bii, N( iO,). Journal of Electroanalytical Chemistry 501, 22-32. [Pg.278]

The application of STM can be divided into different fields of investigation solid-vacuum interface (UHV), solid-gas interface, solid-liquid interface (electrochemistry), biology, and nanotechnology. Some landmarks are shown in Table 1. [Pg.307]

All branches of science have a growing interest in the nature of interfaces because many molecular events are influenced by the presence of a nearby interface. Electrochemistry, historically the senior surface science, retains a central importance in understanding interfacial phenomena, and its contributions will be essential in resolving the intellectual challenges in the characterization and deliberate design of surfaces. These issues, in turn, will fundamentally influence the evolution of the molecular sciences as a whole, which will be increasingly concerned with tailored supramolecular systems. [Pg.116]

The book is organized into five parts. Part I consists of seven chapters and deals with fundamental aspects of interfacial phenomena such as catalytic properties of liquid interfaces, electrochemistry at polarized interfaces, ion solvation and resolvation, interfacial potentials, separations, and interfacial catalysis in metal complexation and in enhanced oil recovery. [Pg.3]

Alam, M. T., M. M. Islam, T. Okajima, and T. Ohsaka. 2007. Measurements of differential capacitance in room temperature ionic liquid at mercury, glassy carbon and gold electrode interfaces. Electrochemistry Communications 9 2370-2374. [Pg.229]

Lota, G., and E. Frackowiak. 2009. Striking capacitance of carbon/iodide interface. Electrochemistry Communications 11 87-90. [Pg.272]

Romann, T., O. Oil, P. Pikma, and E. Lust. 2012. Abnormal infrared effects on bismuth thin film-EMImBF4 ionic liquid interface. Electrochemistry Communications 23 118-121. [Pg.323]

Esina N.O., Molchanov AM., Kalinin M.G.(1996) The effect of oxychemical impurities in melt upon the structure of tungsten electrodeposited onto the plane of molybdenum. Extend Abstracts, Baltic Conference of Interface Electrochemistry, Tartu 1996, 71-72. [Pg.116]

Keywords— Electrode-electrolyte interface. Electrochemistry, Frequency response. Impedance analysis. Bioimpedance. [Pg.65]

Because comprehensive surveys and extensive review articles related to iron/acid interface electrochemistry and including new experimental results and critical interpretations of the proposed mechanisms have been published recently, " a lot of the information included in these papers will not be repeated here the reader is advised to consult this literature. [Pg.212]

Electrochemistry is concerned with the study of the interface between an electronic and an ionic conductor and, traditionally, has concentrated on (i) the nature of the ionic conductor, which is usually an aqueous or (more rarely) a non-aqueous solution, polymer or superionic solid containing mobile ions (ii) the structure of the electrified interface that fonns on inunersion of an electronic conductor into an ionic conductor and (iii) the electron-transfer processes that can take place at this interface and the limitations on the rates of such processes. [Pg.559]

One of the most important advances in electrochemistry in the last decade was tlie application of STM and AFM to structural problems at the electrified solid/liquid interface [108. 109]. Sonnenfield and Hansma [110] were the first to use STM to study a surface innnersed in a liquid, thus extending STM beyond the gas/solid interfaces without a significant loss in resolution. In situ local-probe investigations at solid/liquid interfaces can be perfomied under electrochemical conditions if both phases are electronic and ionic conducting and this... [Pg.1948]

In contrast to many other surface analytical techniques, like e. g. scanning electron microscopy, AFM does not require vacuum. Therefore, it can be operated under ambient conditions which enables direct observation of processes at solid-gas and solid-liquid interfaces. The latter can be accomplished by means of a liquid cell which is schematically shown in Fig. 5.6. The cell is formed by the sample at the bottom, a glass cover - holding the cantilever - at the top, and a silicone o-ring seal between. Studies with such a liquid cell can also be performed under potential control which opens up valuable opportunities for electrochemistry [5.11, 5.12]. Moreover, imaging under liquids opens up the possibility to protect sensitive surfaces by in-situ preparation and imaging under an inert fluid [5.13]. [Pg.280]

K. Heinzinger. Molecular dynamics of water at interfaces. In J. Lipkowski, P. N. Ross, eds. Structure of Electrified Interfaces, Erontiers of Electrochemistry. New York VCH 1993, Chap 7, p. 239. [Pg.381]

M. L. Berkowitz, I.-C. Yeh, E. Spohr. Structure of water at the water/metal interface. Molecular dynamics computer simulations. In A. Wieckowski, ed. Interfacial Electrochemistry. New York Marcel Dekker, 1999, (in press). [Pg.383]

From the experimental results and theoretical approaches we learn that even the simplest interface investigated in electrochemistry is still a very complicated system. To describe the structure of this interface we have to tackle several difficulties. It is a many-component system. Between the components there are different kinds of interactions. Some of them have a long range while others are short ranged but very strong. In addition, if the solution side can be treated by using classical statistical mechanics the description of the metal side requires the use of quantum methods. The main feature of the experimental quantities, e.g., differential capacitance, is their nonlinear dependence on the polarization of the electrode. There are such sophisticated phenomena as ionic solvation and electrostriction invoked in the attempts of interpretation of this nonlinear behavior [2]. [Pg.801]

The present Section, which provides an outline of selected relevant topics in electrochemistry, is intended primarily as an introduction to aqueous corrosion for those readers whose basic training has not involved a study of electrochemistry. The scope of electrochemistry is enormous and cannot be treated adequately here, but there are now a number of excellent books on the subject, and it is hoped that this outline will serve to stimulate further study. The topics selected are as follows a) the nature of the electrified interface between the metal and the solution, (b) adsorption, (c) transfer of charge across the interface under equilibrium and non-equilibrium conditions, d) overpotential and the rate of an electrode reaction and (e) the hydrogen evolution reaction and hydrogen absorption by ferrous alloys. For reasons of space a number of important topics, such as the electrochemistry of electrolyte solutions, have been omitted. [Pg.1165]

The electrical double layer is the array of charged particles and/or oriented dipoles that exists at every material interface. In electrochemistry, such a layer reflects the ionic zones formed in the solution to compensate for the excess of charge on the electrode (qe). A positively charged electrode thus attracts a layer of negative ions (and vice versa). Since the interface must be neutral. qe + qs = 0 (where qs is the charge of the ions in the nearby solution). Accordingly, such a counterlayer is made... [Pg.18]

In principle, a measurement of upon water adsorption gives the value of the electrode potential in the UHV scale. In practice, the interfacial structure in the UHV configuration may differ from that at an electrode interface. Thus, instead of deriving the components of the electrode potential from UHV experiments to discuss the electrochemical situation, it is possible to proceed the other way round, i.e., to examine the actual UHV situation starting from electrochemical data. The problem is that only relative quantities are measured in electrochemistry, so that a comparison with UHV data requires that independent data for at least one metal be available. Hg is usually chosen as the reference (model) metal for the reasons described earlier. [Pg.18]

By tradition, electrochemistry has been considered a branch of physical chemistry devoted to macroscopic models and theories. We measure macroscopic currents, electrodic potentials, consumed charges, conductivities, admittance, etc. All of these take place on a macroscopic scale and are the result of multiple molecular, atomic, or ionic events taking place at the electrode/electrolyte interface. Great efforts are being made by electrochemists to show that in a century where the most brilliant star of physical chemistry has been quantum chemistry, electrodes can be studied at an atomic level and elemental electron transfers measured.1 The problem is that elemental electrochemical steps and their kinetics and structural consequences cannot be extrapolated to macroscopic and industrial events without including the structure of the surface electrode. [Pg.308]

The presence of polymer, solvent, and ionic components in conducting polymers reminds one of the composition of the materials chosen by nature to produce muscles, neurons, and skin in living creatures. We will describe here some devices ready for commercial applications, such as artificial muscles, smart windows, or smart membranes other industrial products such as polymeric batteries or smart mirrors and processes and devices under development, such as biocompatible nervous system interfaces, smart membranes, and electron-ion transducers, all of them based on the electrochemical behavior of electrodes that are three dimensional at the molecular level. During the discussion we will emphasize the analogies between these electrochemical systems and analogous biological systems. Our aim is to introduce an electrochemistry for conducting polymers, and by extension, for any electrodic process where the structure of the electrode is taken into account. [Pg.312]

Electrochemical impedance spectroscopy leads to information on surface states and representative circuits of electrode/electrolyte interfaces. Here, the measurement technique involves potential modulation and the detection of phase shifts with respect to the generated current. The driving force in a microwave measurement is the microwave power, which is proportional to E2 (E = electrical microwave field). Therefore, for a microwave impedance measurement, the microwave power P has to be modulated to observe a phase shift with respect to the flux, the transmitted or reflected microwave power APIP. Phase-sensitive microwave conductivity (impedance) measurements, again provided that a reliable theory is available for combining them with an electrochemical impedance measurement, should lead to information on the kinetics of surface states and defects and the polarizability of surface states, and may lead to more reliable information on real representative circuits of electrodes. We suspect that representative electrical circuits for electrode/electrolyte interfaces may become directly determinable by combining phase-sensitive electrical and microwave conductivity measurements. However, up to now, in this early stage of development of microwave electrochemistry, only comparatively simple measurements can be evaluated. [Pg.461]

Theoretical aspects of mediation and electrocatalysis by polymer-coated electrodes have most recently been reviewed by Lyons.12 In order for electrochemistry of the solution species (substrate) to occur, it must either diffuse through the polymer film to the underlying electrode, or there must be some mechanism for electron transport across the film (Fig. 20). Depending on the relative rates of these processes, the mediated reaction can occur at the polymer/electrode interface (a), at the poly-mer/solution interface (b), or in a zone within the polymer film (c). The equations governing the reaction depend on its location,12 which is therefore an important issue. Studies of mediation also provide information on the rate and mechanism of electron transport in the film, and on its permeability. [Pg.586]

Breiter, M. W. Low-Temperature Electrochemistry at High-T2 Superconductor/Ionic Conductor Interfaces 28... [Pg.601]

We start by considering a schematic representation of a porous metal film deposited on a solid electrolyte, e.g., on Y203-stabilized-Zr02 (Fig. 5.17). The catalyst surface is divided in two distinct parts One part, with a surface area AE is in contact with the electrolyte. The other with a surface area Aq is not in contact with the electrolyte. It constitutes the gas-exposed, i.e., catalytically active film surface area. Catalytic reactions take place on this surface only. In the subsequent discussion we will use the subscripts E (for electrolyte) and G (for gas), respectively, to denote these two distinct parts of the catalyst film surface. Regions E and G are separated by the three-phase-boundaries (tpb) where electrocatalytic reactions take place. Since, as previously discussed, electrocatalytic reactions can also take place to, usually,a minor extent on region E, one may consider the tpb to be part of region E as well. It will become apparent below that the essence of NEMCA is the following One uses electrochemistry (i.e. a slow electrocatalytic reaction) to alter the electronic properties of the metal-solid electrolyte interface E. [Pg.206]

This does not imply that this double layer is at its point of zero charge (pzc). On the contrary, as with every other double layer in electrochemistry, there exists for every metal/solid electrolyte combination one and only one UWr value for which this metal/gas double layer is at its point of zero charge. These critical Uwr values can be determined by measuring the dependency onUWR of the double layer capacitance, Cd, of the effective double layer at the metal/gas interface via AC Impedance Spectroscopy as discussed in Chapter 5.7. [Pg.225]


See other pages where Interfaces, electrochemistry is mentioned: [Pg.109]    [Pg.363]    [Pg.1]    [Pg.61]    [Pg.213]    [Pg.213]    [Pg.214]    [Pg.109]    [Pg.363]    [Pg.1]    [Pg.61]    [Pg.213]    [Pg.213]    [Pg.214]    [Pg.801]    [Pg.1948]    [Pg.1949]    [Pg.199]    [Pg.43]    [Pg.1165]    [Pg.233]    [Pg.437]    [Pg.438]    [Pg.170]    [Pg.197]    [Pg.226]    [Pg.334]   


SEARCH



Electrochemistry at the cell membrane-solution interface

Electrochemistry, understanding the solid-liquid interface

Interfaces, electrochemistry fractal approach

© 2024 chempedia.info