Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface resonance

The varying actual orientation of molecules adsorbed at an aqueous solution-CCU interface with decreasing A has been followed by resonance Raman spectroscopy using polarized light [130]. The effect of pressure has been studied for fatty alcohols at the water-hexane [131] and water-paraffin oil [132] interfaces. [Pg.85]

The behavior of insoluble monolayers at the hydrocarbon-water interface has been studied to some extent. In general, a values for straight-chain acids and alcohols are greater at a given film pressure than if spread at the water-air interface. This is perhaps to be expected since the nonpolar phase should tend to reduce the cohesion between the hydrocarbon tails. See Ref. 91 for early reviews. Takenaka [92] has reported polarized resonance Raman spectra for an azo dye monolayer at the CCl4-water interface some conclusions as to orientation were possible. A mean-held theory based on Lennard-Jones potentials has been used to model an amphiphile at an oil-water interface one conclusion was that the depth of the interfacial region can be relatively large [93]. [Pg.551]

The SHG/SFG technique is not restricted to interface spectroscopy of the delocalized electronic states of solids. It is also a powerful tool for spectroscopy of electronic transitions in molecules. Figure Bl.5.13 presents such an example for a monolayer of the R-enantiomer of the molecule 2,2 -dihydroxyl-l,l -binaphthyl, (R)-BN, at the air/water interface [ ]. The spectra reveal two-photon resonance features near wavelengths of 332 and 340 mu that are assigned to the two lowest exciton-split transitions in the naphtli-2-ol... [Pg.1293]

Heinz T F, Himpsel F J, Palange E and Burstein E 1989 Electronic transitions at the CaF2/Si(111) interface probed by resonant three-wave-mixing spectroscopy Phys. Rev. Lett. 63 644-7... [Pg.1303]

It is particularly important to study process phenomena under dynamic (rather than static) conditions. Most current analytical techniques are designed to determine the initial and final states of a material or process. Instmments must be designed for the analysis of materials processing in real time, so that the cmcial chemical reactions in materials synthesis and processing can be monitored as they occur. Recent advances in nuclear magnetic resonance and laser probes indicate valuable lines of development for new techniques and comparable instmmentation for the study of interfaces, complex hquids, microstmctures, and hierarchical assemblies of materials. Instmmentation needs for the study of microstmctured materials are discussed in Chapter 9. [Pg.88]

Chul, M Phillips, R McCarthy, M, Measurement of the Porous Microstructure of Hydrogels by Nuclear Magnetic Resonance, Journal of Colloid and Interface Science 174, 336, 1995. Cohen, Y Ramon, O Kopeknan, IJ Mizrahi, S, Characterization of Inhomogeneous Polyacrylamide Hydrogels, Journal of Polymer Science Part B Polymer Physics 30, 1055, 1992. Cohen Addad, JP, NMR and Statistical Structures of Gels. In The Physical Properties of Polymeric Gels Cohen Addad, JP, ed. Wiley Chichester, UK, 1996 39. [Pg.610]

Ina similarmarmerto surface-enhanced Raman scattering, surface-enhancement of hyper-Raman scattering is a promising method to study adsorbed molecules on metal surfaces [24]. Based on recent developments in plasmonics, design and fabrication of metal substrates with high enhancement activities is now becoming possible [21]. Combination of the surface enhancement with the electronic resonances would also be helpful for the practical use of hyper-Raman spectroscopy. Development of enhanced hyper-Raman spectroscopy is awaited for the study of solid/liquid interfaces. [Pg.96]

Successful applications of fourth-order coherent Raman scattering are presented. Interface-selective detection of Raman-active vibrations is now definitely possible at buried interfaces. It can be recognized as a Raman spectroscopy with interface selectivity. Vibrational sum-frequency spectroscopy provides an interface-selective IR spectroscopy in which the vibrational coherence is created in the IR resonant transition. The two interface-selective methods are complementary, as has been experienced with Raman and IR spectroscopy in the bulk. [Pg.113]

On the other hand, we cannot ignore drawbacks in observing fourth-order responses. The desired response is always weak due to the high optical order. The damage threshold of the interface to be analyzed is severe with intense irradiation. The difficulty has been overridden by one-photon resonant enhancement of Raman-pump efficiency. The observable range of materials is somewhat limited as a result. There is still much room for technical improvements and the author is optimistic for the future. [Pg.113]

The effectiveness of a crude oil demulsifier is correlated with the lowering of the shear viscosity and the dynamic tension gradient of the oil-water interface. The interfacial tension relaxation occurs faster with an effective demulsifier [1714]. Short relaxation times imply that interfacial tension gradients at slow film thinning are suppressed. Electron spin resonance experiments with labeled demulsifiers indicate that the demulsifiers form reverse micellelike clusters in the bulk oil [1275]. The slow unclustering of the demulsifier at the interface appears to be the rate-determining step in the tension relaxation process. [Pg.327]

For adsorbates on a metal surface, an SFG spectmm is a combination of resonant molecular transitions plus a nonresonant background from the metal. (There may also be a contribution from the water-CaF2 interface that can be factored out by following electrode potential effects see below.) The SFG signal intensities are proportional to the square of the second-order nonlinear susceptibility [Shen, 1984] ... [Pg.381]


See other pages where Interface resonance is mentioned: [Pg.1292]    [Pg.116]    [Pg.1292]    [Pg.116]    [Pg.106]    [Pg.244]    [Pg.327]    [Pg.1215]    [Pg.1294]    [Pg.1297]    [Pg.1733]    [Pg.1828]    [Pg.2747]    [Pg.1]    [Pg.380]    [Pg.415]    [Pg.418]    [Pg.468]    [Pg.732]    [Pg.415]    [Pg.143]    [Pg.591]    [Pg.865]    [Pg.18]    [Pg.109]    [Pg.521]    [Pg.295]    [Pg.67]    [Pg.127]    [Pg.146]    [Pg.266]    [Pg.776]    [Pg.502]    [Pg.71]    [Pg.75]    [Pg.103]    [Pg.104]    [Pg.110]    [Pg.136]    [Pg.141]    [Pg.142]    [Pg.146]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Bistable energy transmission through the interface with Fermi resonance interaction

Electron spin resonance interface structure

Electron spin resonance interface, dependence

Fermi resonance interface waves

Interface resonance-mass spectrometry

Organic Interface Formation Studied In Situ by Resonant Raman Spectroscopy

© 2024 chempedia.info