Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biphasic interface

Industrial environments expose individuals to a plethora of airborne chemical compounds in the form of vapors, aerosols, or biphasic mixtures of both. These atmospheric contaminants primarily interface with two body surfaces the respiratory tract and the skin. Between these two routes of systemic exposure to airborne chemicals (inhalation and transdermal absorption) the respiratory tract has the larger surface area and a much greater percentage of this surface exposed to the ambient environment. Or dinary work clothing generally restricts skin exposures to the arms, neck, and head, and special protective clothing ensembles further limit or totally eliminate skin exposures, but breathing exposes much of the airway to contaminants. [Pg.195]

Hydrolysis of substrates is performed in water, buffered aqueous solutions or biphasic mixtures of water and an organic solvent. Hydrolases tolerate low levels of polar organic solvents such as DMSO, DMF, and acetone in aqueous media. These cosolvents help to dissolve hydrophobic substrates. Although most hydrolases require soluble substrates, lipases display weak activity on soluble compounds in aqueous solutions. Their activity markedly increases when the substrate reaches the critical micellar concentration where it forms a second phase. This interfacial activation at the lipid-water interface has been explained by the presence of a... [Pg.133]

In a biphasic medium, two situations are distinguished for the reaction. Biocatalysis occurs at the liquid-liquid interface [42,43] or in the bulk of the aqueous phase [25,27]. Models have been developed for both types, and interaction between mass transfer and enzyme-catalyzed reactions has been also studied. [Pg.556]

The development of biphasic media requires a knowledge of general rules based on observation. The choice of the biocatalyst and the organic solvent is very important. Estimation of the biocatalyst tolerance to an organic solvent is based on various indicators, described later in this chapter. Biocatalysts are also sensitive to the process of the liquid-liquid interface. They can be used in two different forms free, soluble or immobilized. [Pg.556]

Biphasic systems are composed of two continuous liquid phases the organic and the aqueous phases [13,25,27,31,36]. An interface generally separates the aqueous phase containing the biocatalyst from the organic phase containing the substrate. Moreover, the reaction product, if poorly soluble in water, can be easily separated from the biocatalyst. The use of carefully measured concentrations in hydrophobic reactants becomes facile in such systems, and substrate excess inhibition of the biocatalyst is reduced. [Pg.557]

Biocatalysis localization in the biphasic medium depends on physicochemical properties of the reactants. When all the chemical species involved in the reaction are hydro-phobic, catalysis occurs at the liquid-liquid interface. However, when the substrate is hydrophobic (initially dissolved in the apolar phase) and the product is hydrophilic (remains in the aqueous phase), the reaction occurs in the aqueous phase [25]. The majority of biphasic systems use sparingly water-soluble substrates and yield hydrophobic products therefore, the aqueous phase serves as a biocatalyst container [34,35] [Fig. 2(a)]. Nevertheless, in some systems, one of the reactants (substrate or product) can be soluble in the aqueous phase [23,36-38] (Fig. 2(b), (c)). [Pg.557]

Biphasic media are macroheterogenous, with a well-defined liquid-liquid interface [25,63] [Fig. 1(g), (h)], or microheterogeneous consisting of an emulsion with a very important interface area [37,38] [Fig. 1-f]. The first medium is used for kinetic studies... [Pg.557]

On the other hand, biocatalyst stability can be affected by the presence of organic-aqueous interface. In our previous work [25], we studied the effect of interface with octane on the lipoxygenase stability in an octane-buffer pH 9.6 biphasic system. This loss in activity is more pronounced than that observed in the aqueous system. During lipoxygena-tion, the active enzyme concentration [E] in the aqueous phase of our biphasic bioreactor was ... [Pg.560]

The liquid-liquid interface has been identified as the major factor responsible for papain deactivation in a biphasic system [66]. If the interfacial tension can be decreased to a small value using surfactant, the biocatalyst stability will be expected to increase. [Pg.560]

As will be described in detail below, solute distribution in biphasic systems can be modulated by application of a Galvani potential difference across the interface, thereby leading to the transfer of species from one phase to the other. Therefore, in electrochemical terms, passive transfer simply means the partition across an interface, mediated by a potential-driven process. [Pg.729]

In both cases, the half-wave potential shifts by RT/ ziF)vaN per pH unit, and a typical example of such a behavior is given in Fig. 9 for the transfer of two acidic fi-diketones at the water-nitrobenzene interface. These results were unexpected, since a current wave is measured at a pH where the compound of interest is by a very large majority neutral, but they in fact represent the typical behavior of ionizable compounds at the ITIES and prove that the interfacial potential and the transfer of protons plays a key role for the distribution in biphasic systems. [Pg.745]

In heterogeneous liquid/liquid reactions, cavitational collapse at or near the interface will cause disruption and mixing, resulting in the formation of very fine emulsions. When very fine emulsions are formed, the surface area available for the reaction between the two phases is significantly increased, thus increasing the rates of reaction. The emulsions formed using cavitation, are usually smaller in size and more stable, than those obtained using conventional techniques and often require little or no surfactant to maintain the stability [8]. This is very beneficial particularly in the case of phase-transfer catalyzed reactions or biphasic systems. [Pg.37]

Onium salts, such as tetraethylammonium bromide (TEAB) and tetra-n-butylammonium bromide (TBAB), were also tested as PTCs immobilized on clay. In particular, Montmorillonite KIO modified with TBAB efficiently catalyzed the substitution reaction of a-tosyloxyketones with azide to a-azidoketones, in a biphasic CHCI3/water system (Figure 6.13). ° The transformation is a PTC reaction, where the reagents get transferred from the hquid to the solid phase. The authors dubbed the PTC-modified catalyst system surfactant pillared clay that formed a thin membrane-hke film at the interface of the chloroform in water emulsion, that is, a third liquid phase with a high affinity for the clay. The advantages over traditional nucleophilic substitution conditions were that the product obtained was very pure under these conditions and could be easily recovered without the need for dangerous distillation steps. [Pg.142]

This is also a field of chemistry, where biphasic and phase transfer-assisted organometallic catalysis [11-12] are very close and sometimes may even overlap. One reason for this closeness is in that inorganic bases are often used in aqueous solutions. Of them, OH is so strongly solvated in water that it will practically not transfer to non-polar organic solvents without a phase transfer (FT) agent, e.g. a quaternary ammonium cation. However, some reactions proceed readily with H2O dissolved in the organic phase, or can take place with reasonable rates at the liquid-liquid interface, and in these cases addition of FT catalysts is not essential. [Pg.148]

D.8.3. Cl Impurity. Trace amounts of chloride impurities, which may be present at levels between 0.1 and 0.5mol/kg, have significant effects on the physical properties of ionic liquids, such as viscosity and density. Increases in viscosity are of particular concern in biphasic processes because of the formation of emulsions that affect the interface between the two phases 88). [Pg.181]

Owing to the very reactive nature of RuO relatively few solvents are suitable for its reactions. It is soluble in water to the extent of some 2% and is stable in such solutions, but reacts violently with diethyl ether, benzene and pyridine [236]. It has often been used catalytically in a biphasic system, with the co-oxidant in the aqueous layer. Under these circumstances the RuO formed from reduction of RuO by the substrate is re-oxidised at the organic - aqueous interface, so that oxidations with such systems can be much enhanced by stirring, shaking or sonication. In some cases (e.g. oxidation of aUcenes) it may be necessary to cool the reactants below room temperature, but in most cases ambient temperatures suffice, as indeed they do for the vast majority of organic oxidations catalysed by Ru complexes. [Pg.13]

On the basis of the Hatta number, the transformations carried out in biphasic systems can be described as slow (Ha < 0.3), intermediate (with a kinetic-diffusion regime 0.3 < Ha < 3.0), and fast (Ha > 3). These are diffusion limited and take place near the interface (within the diffusion layer). Slow transformations are under kinetic control and occur mostly in a bulk phase, so that the amount of substrate transformed in the boundary layer in negligible. When diffusion and reaction rate are of similar magnitude, the reaction takes place mostly in the diffusion layer, although extracted substrate is also present in the continuous phase, where it is transformed at a rate depending on its concentration [38, 50, 54]. [Pg.205]

One method is to run the reaction in an aqueous buffer/organic solvent biphasic system. This makes it possible to work at high substrate and product concentrations and at the pH-optimum of the enzyme. In addition, in water-immiscible solvents the non-enzymahc addition of HCN to the carbonyl group is non-existent or extremely slow. Possible disadvantages are enzyme deactivation at the interface and the presence of organic solvent dissolved in the aqueous phase [15, 17, 18]. [Pg.213]


See other pages where Biphasic interface is mentioned: [Pg.259]    [Pg.270]    [Pg.142]    [Pg.564]    [Pg.564]    [Pg.569]    [Pg.747]    [Pg.655]    [Pg.251]    [Pg.176]    [Pg.359]    [Pg.63]    [Pg.204]    [Pg.242]    [Pg.169]    [Pg.338]    [Pg.134]    [Pg.145]    [Pg.229]    [Pg.335]    [Pg.221]    [Pg.221]    [Pg.92]    [Pg.95]    [Pg.259]    [Pg.270]    [Pg.73]    [Pg.165]    [Pg.191]    [Pg.193]    [Pg.195]    [Pg.205]    [Pg.143]   
See also in sourсe #XX -- [ Pg.335 , Pg.342 ]




SEARCH



Biphase

Biphasic

Biphasic interface formation

© 2024 chempedia.info