Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Instrumentation Parameters

It is strongly advised to use an oscilloscope while making impedance measurements. It is useful to monitor the time-domain signals that are processed in the impedance instrumentation. It is particulary useful to monitor the signals in the form of a Lissajous plot as discussed in Section 7.3.1. [Pg.147]

The contributions to the error structure of impedance measurements Eire described in Section 21.1. Impedance measurements entail a compromise between minimizing bias errors, minimizing stochastic errors, and maximizing the information content of the resulting spectrum. The parameter settings described in this section may not apply to all impedance instrumentation. [Pg.147]

The following steps may be taken to reduce the role of stochastic errors (see Section 21.2) in impedance measurements. [Pg.147]


The infonuation that can be extracted from inorganic samples depends mainly on tlie electron beam/specimen interaction and instrumental parameters [1], in contrast to organic and biological materials, where it depends strongly on specimen preparation. [Pg.1634]

ICP-SFMS (Thermo Finnigan, Flement) with cold vapour generation was developed with a guard electrode and a gold amalgamation device using an Au-sorbent for sample pre-concentration to improve the sensitivity. Instrumental parameters of ICP-SFMS such as take-up time, heating temperature of Au-sorbent, additional gas flow, and sample gas flow were optimized. Detection limit calculated as 3 times the standard deviation of 10 blanks was 0,05 ng/1, RSD = 7-9 %. [Pg.171]

As atomic fluorescence spectrometer a mercury analyzer Mercur , (Analytik-Jena, Germany) was used. In the amalgamation mode an increase of sensitivity by a factor of approximately 7-8 is obtained compared with direct introduction, resulting in a detection limit of 0,09 ng/1. This detection limit has been improved further by pre-concentration of larger volumes of samples and optimization of instrumental parameters. Detection limit 0,02 ng/1 was achieved, RSD = 1-6 %. [Pg.171]

Requirements for standards used In macro- and microspectrofluorometry differ, depending on whether they are used for Instrument calibration, standardization, or assessment of method accuracy. Specific examples are given of standards for quantum yield, number of quanta, and decay time, and for calibration of Instrument parameters. Including wavelength, spectral responslvlty (determining correction factors for luminescence spectra), stability, and linearity. Differences In requirements for macro- and micro-standards are considered, and specific materials used for each are compared. Pure compounds and matrix-matched standards are listed for standardization and assessment of method accuracy, and existing Standard Reference Materials are discussed. [Pg.98]

Definition and Uses of Standards. In the context of this paper, the term "standard" denotes a well-characterized material for which a physical parameter or concentration of chemical constituent has been determined with a known precision and accuracy. These standards can be used to check or determine (a) instrumental parameters such as wavelength accuracy, detection-system spectral responsivity, and stability (b) the instrument response to specific fluorescent species and (c) the accuracy of measurements made by specific Instruments or measurement procedures (assess whether the analytical measurement process is in statistical control and whether it exhibits bias). Once the luminescence instrumentation has been calibrated, it can be used to measure the luminescence characteristics of chemical systems, including corrected excitation and emission spectra, quantum yields, decay times, emission anisotropies, energy transfer, and, with appropriate standards, the concentrations of chemical constituents in complex S2unples. [Pg.99]

Step (6) can be broken down as given in Table 2.7. If the hardware and its operation is under control, and some experience with similar problems is available, experiments need only be carried out late in the selection process to prove/disprove the viability of a tentative protocol. Laboratory work will earnestly begin with the optimization of instrumental parameters, and will continue with validation. In following such a simulation procedure, days and weeks of costly lab work can be replaced by hours or days of desk work. [Pg.112]

Direct instrument control (or the lack of it) was an important issue for the earlier version of CDS. The scheme of connecting the detector channels through A/Ds to CDS worked well in analytical laboratories across the pharmaceutical industry. The scheme provided enough flexibility so that the CDS could collect data from a variety of instruments, including GC, HPLC, IC, SFC, and CE. It was equally important that the CDS could be connected to instruments that were manufactured by different vendors. It was not uncommon to find a variety of instruments from different vendors in a global pharmaceutical research company. The disadvantage of this scheme was that the instrument metadata could not be linked to the result file of each sample analyzed. It could not be guaranteed that the proper instrument parameters were used in sample analysis. Another need came from the increased use of... [Pg.56]

Both positive and negative ions are produced during the sputtering process, and either can be recorded by an appropriate choice of instrumental parameters. Positive ions are the result of protonation, [M + H]", or cationiz-ation, [M +cation], whereas negative ions are preponderantly [M-H], but can also be formed by the addition of an anion, that is, [M+anion]". The type of pseudomolecular ion produced is governed by the chemical nature of the sample and by the composition of the matrix from which it is ionized. [Pg.25]

Determinations of projected atom positions are much more difficult for atoms in the Interior of the particle if the atoms are not conveniently aligned in straight rows in the direction of the incident electron beam. For the immediate future only the most favorable cases will be studied but with the application of anticipated Improvements of resolution to the l.sX level or better and the means for more accurate and automated measurement of the necessary Instrumental parameters, the detailed study of configurations of atoms in small particles should become generally feasible. [Pg.331]

Semiautomatic devices suited for preparative purposes are the CAMAG Linomat 5, the Desaga HPTLC applicator AS 30, and the Alltech TLC sample streaker. For all devices, the syringe has to be filled manually with sample solution and rinsed after sample application. Except for the Alltech TLC sample streaker, each of these instruments can be employed either as software-controlled or as a stand-alone device. The former is more convenient for creation, editing, and saving of the application pattern and instrument parameters. [Pg.107]

For practical applications of (2.15), i.e., the exploration of the elastic properties of materials, it is convenient to eliminate instrumental parameters by referring the measured intensities to a base intensity, usually measured at 4.2 K. The corresponding expression is then [6] ... [Pg.16]

External review is of major importance in ensuring the outcome and reportability of LSMBS study results. Additional experts have the opportunity to review the data and results just after their generation, at a point where corrections can be easily proposed and made. In addition, external review aids in achieving consistency in the results reported by different laboratories. Finally, external review provides feedback for optimization of the analytical and instrumental parameters at each laboratory. [Pg.245]

Note that the indicated Benchmate parameters are guidelines and should be optimized for the instrument used. Instrument parameters may be adjusted to improve sample analysis. [Pg.513]

In gas chromatography the value of the partition coefficient d ends only on the type of stationary phase and the column temperature. It is independent of column type and instrumental parameters. The proportionality factor in equation (l.ll) is called the phase ratio and is equal to the ratio of the volume of the gas (Vg) and liquid (V ) phases in the column. For gas-solid (adsorption) chromatography the phase ratio is given by the volume of the gas phase divided by the surface area of the stationary phase. [Pg.528]

Before going further, it may be noted that the flipping ratio does not depend either on the Lorentz factor or on absorption in the sample. Certain instrumental parameters such as the polarisation of the neutron beam for the two spin states, the half wavelength contamination of the neutron beam and the dead-time detector can readily be taken into account when analysing the data. On the other hand, the extinction which may occur in the scattering process is not so easy to assess, but must also be included [14]. Sometimes, it is even possible to determine the magnetisation density of twinned crystals [15]. [Pg.247]

It is recommended that the protocol itself contain language that allows for minor modifications of an analytical method or procedure without necessitating an amendment (or a deviation) for example, "Minor modifications in instrumental parameters and/or adjustments in technique may be made in the method during specimen analysis to enhance overall efficiency or the sensitivity, specificity, or selectivity of analyte response."... [Pg.157]

Fortunately these unforeseen variables did not affect the most abundant peaks, nor the correct identification of the blind-coded bacteria. While differences associated with matrix and instrumental parameters were expected, the authors conducting this experiment did not anticipate the extent and speed with which bacteria could respond, through their protein profiles, to subtle environmental changes. [Pg.131]

Table 1 Approximate values for r (Rayleigh criterion) estimated for three characteristic wavenumbers typical instrument parameters for transmission and ATR experiments assumed... Table 1 Approximate values for r (Rayleigh criterion) estimated for three characteristic wavenumbers typical instrument parameters for transmission and ATR experiments assumed...
The fundamental quantity of interest, BE, is calculated from the KE (correcting for the work function 4>s). The sample is grounded to the spectrometer to pin the Fermi levels to a fixed value of the spectrometer (Fig. 1) so that the applicable work function is that of the spectrometer, sp [2], This instrumental parameter is a constant that can be measured. The BEs are then easily obtained from Eq. 2 ... [Pg.96]

The IDL is an instrument parameter and is the lowest concentration of the measurand that results in an instrument response, reliably. This can be obtained from measurements of pure analyte. This is in contrast to the MDL (LoD) which is based on measurements of a blank real sample or a low-level spike that has been processed through all of the steps of the method. Clearly, it is the latter that is relevant for test samples. The IDL can also be estimated from the instrument signal-to-noise ratio it is approximately three times this ratio. In this case, the value obtained has to be converted to concentration units. [Pg.87]

Hollow-cathode lamps are currently available for over sixty elements. Several multi-element lamps have been constructed and are useful for routine determinations, but they have proved to be of doubtful performance up to now. More successful with regard to multi-element analysis have been computer controlled automated systems, which enable a programme of sequential measurements to be made with instrumental parameters being adjusted to the optimum for each element to be measured. [Pg.327]

Most instrumental parameters can now be set and monitored continuously under the control of a microprocessor and employing a limited amount of memory. This facilitates the running of repetitive analyses with improved precision (although not necessarily with improved accuracy) and unattended operation which releases the analyst for other duties. An example of the degree of control available in a modern instrument is shown in Figure 13.5. [Pg.536]

LOD is defined as the lowest concentration of an analyte that produces a signal above the background signal. LOQ is defined as the minimum amount of analyte that can be reported through quantitation. For these evaluations, a 3 x signal-to-noise ratio (S/N) value was employed for the LOD and a 10 x S/N was used to evaluate LOQ. The %RSD for the LOD had to be less than 20% and for LOQ had to be less than 10%. Table 6.2 lists the parameters for the LOD and LOQ for methyl paraben and rhodamine 110 chloride under the conditions employed. It is important to note that the LOD and LOQ values were dependent upon the physicochemical properties of the analytes (molar absorptivity, quantum yield, etc.), methods employed (wavelengths employed for detection, mobile phases, etc.), and instrumental parameters. For example, the molar absorptivity of methyl paraben at 254 nm was determined to be approximately 9000 mol/L/cm and a similar result could be expected for analytes with similar molar absorptivity values when the exact methods and instrumental parameters were used. In the case of fluorescence detection, for most applications in which the analytes of interest have been tagged with tetramethylrhodamine (TAMRA), the LOD is usually about 1 nM. [Pg.174]

The calibration sensitivity of the analytical method employed is simply determined as the slope of the calibration curve. For example, in the case of methyl paraben, the value of calibration sensitivity obtained was 1.6 mAl I/min///M (Figure 6.22). Analytical sensitivity is defined as the ratio between calibration sensitivity and the value of the standard deviation obtained at each concentration.10 The value of the standard deviation encountered for a concentration of 0.6 //M was 0.1, resulting in an analytical sensitivity for methyl paraben at 0.6 //M of 16 m. II/min///M. As indicated for LOD and LOQ, the values obtained for linearity and sensitivity depend on the analytes employed and the corresponding method and instrumental parameters. For example, Liu et al.9 evaluated the LOD and LOQ for Drug A (released from OROS) for a particular analytical method employing //Pl.C to be 0.5 //g/ml. and 2.0 //g/mL, respectively. [Pg.175]


See other pages where Instrumentation Parameters is mentioned: [Pg.1308]    [Pg.1354]    [Pg.409]    [Pg.556]    [Pg.333]    [Pg.110]    [Pg.384]    [Pg.572]    [Pg.877]    [Pg.305]    [Pg.386]    [Pg.394]    [Pg.237]    [Pg.245]    [Pg.245]    [Pg.245]    [Pg.282]    [Pg.101]    [Pg.270]    [Pg.245]    [Pg.57]    [Pg.344]    [Pg.303]    [Pg.532]    [Pg.543]    [Pg.664]   


SEARCH



Instrument parameters

© 2024 chempedia.info