Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation initiation step

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

Some details of the chain-initiation step have been elucidated. With an oxygen radical-initiator such as the /-butoxyl radical, both double bond addition and hydrogen abstraction are observed. Hydrogen abstraction is observed at the ester alkyl group of methyl acrylate. Double bond addition occurs in both a head-to-head and a head-to-tail manner (80). [Pg.165]

The initiating step in these reactions is the attachment of a group to the sulfoxide oxygen to produce an activated intermediate (5). Suitable groups are proton, acyl, alkyl, or almost any of the groups that also initiate the oxidations of alcohols with DMSO (40,48). In a reaction, eg, the one between DMSO and acetic anhydride, the second step is removal of a proton from an a-carbon to give an yUde (6). Release of an acetate ion generates the sulfur-stabilized carbonium ion (7), and the addition of acetate ion to the carbonium ion (7) results in the product (eq. 15) ... [Pg.109]

The nature of the initiation step, which may occur in a variety of ways, is not known in all cases. Commonly used ethers such as ethyl ether, isopropyl ether, tetrahydrofuran, and i)-dioxane are particulady prone to form explosive peroxides on prolonged storage and exposure to air and light (see Peroxides AND PEROXY COMPOUNDS, ORGANIC), and should contain antioxidants (qv) to prevent their build-up. One of the exceptions to the peroxide forming tendency of ethers is methyl fert-alkyl ethers such as methyl fert-butyl ether [1634-04-4] (MTBE) and fert-amyl methyl ether [994-05-8] (TAME). Both have shown htde tendency if any to form peroxides (2,8). [Pg.425]

The initial step is the coordination of the alkyl halide 2 to the Lewis acid to give a complex 4. The polar complex 4 can react as electrophilic agent. In cases where the group R can form a stable carbenium ion, e.g. a tert-buiyX cation, this may then act as the electrophile instead. The extent of polarization or even cleavage of the R-X bond depends on the structure of R as well as the Lewis acid used. The addition of carbenium ion species to the aromatic reactant, e.g. benzene 1, leads to formation of a cr-complex, e.g. the cyclohexadienyl cation 6, from which the aromatic system is reconstituted by loss of a proton ... [Pg.120]

The anodic oxidation of the carboxylate anion 1 of a carboxylate salt to yield an alkane 3 is known as the Kolbe electrolytic synthesis By decarboxylation alkyl radicals 2 are formed, which subsequently can dimerize to an alkane. The initial step is the transfer of an electron from the carboxylate anion 1 to the anode. The carboxyl radical species 4 thus formed decomposes by loss of carbon dioxide. The resulting alkyl radical 2 dimerizes to give the alkane 3 " ... [Pg.183]

In the first of these sequences, often called the Torgov-Smith synthesis, the initial step consists in condensation of a 2-alkyl-cyclopentane-l,3-dione with the allyl alcohol obtained from 6-methoxy-l-tetralone and vinylmagnesium chloride. Although this reaction at first sight resembles a classic SN displacement, the reaction is actually carried out with only a trace of base. [Pg.167]

Recall from Section 5.3 that radical substitution reactions require three kinds of steps initiation, propagation, and termination. Once an initiation step has started the process by producing radicals, the reaction continues in a self-sustaining cycle. The cycle requires two repeating propagation steps in which a radical, the halogen, and the alkane yield alkyl halide product plus more radical to carry on the chain. The chain is occasionally terminated by the combination of two radicals. [Pg.335]

Alkyl halides can be reduced to alkanes by a radical reaction with tributyltin hydride, (C4H9)3SnH, in the presence of light (hv). Propose a radical chain mechanism by which the reaction might occur. The initiation step is the light-induced homolytic cleavage of the Sn— H bond to yield a tributyltin radical. [Pg.358]

H2SO4 = 0.09 M, fi = 2.0 M). Arrhenius parameters are A 10 ° I.mole . sec and E 28.5 kcal.mole . Successive alkylation of the olefinic bond increases the rate of reaction. One unusual feature is the lack of any acidity dependence. This implies that Co(H20)g is the active oxidant and that a radical cation is formed initially the lack of any retardation by added Co(II) means that the initial step is irreversible, viz. [Pg.375]

Nitrosamines require metabolic activation in order to produce a chemical species that will alkylate nucleophilic sites on a biomolecule such as DNA (1, . The crucial initial step in the... [Pg.39]

O-Bond metathesis of the Ln-alkyl with the phosphine gives a Ln-phosphido complex. (This initiation step was observed to be faster when the hydride derivative [Cp 2bnH]2 was used.) Since the reactions were zero-order in substrate, the next... [Pg.152]

The initial step of the adsorption of cyclic sulfides on a Mo(100) surface is also the formation of adsorbed thiolate groups.395-397 Adsorbed alkyl thiolates decompose to adsorbed sulfur, carbon, and hydrogen on the clean Mo surface, but once the surface is deactivated by adsorbed sulfur, alkanes and alkenes evolve from the surface. Tetrahydrothiophene (34) and trimethylene sulfide decompose on Mo(110) to alkanes and alkenes by way of a common intermediate, which is proposed to be a surface thiolate (33). The thiolate undergoes hydrogenation or dehydrogenation, depending on the surface hydrogen concentration (Scheme 4.115).398 399... [Pg.181]

Recently, the iron-promoted Barbier-type addition of alkyl halides to aromatic aldehydes has been reported (Equation (26)).326 According to the proposed mechanism, the initial step is the formation of an alkyl radical, which can be reduced to the corresponding carbanion. This carbanion nucleophile can react, while coordinated to the iron pentacarbonyl complex, with the corresponding aldehyde. This stoichiometric method is limited with respect to substrate scope and yield. The same authors have also developed the Reformatsky-type addition of cr-halosub-stituted carbonitriles to aldehydes and ketones in the presence of iron pentacarbonyl.3... [Pg.439]

The crucial step in self-alkylation is decomposition of the butoxy group into a free Brpnsted acid site and isobutylene (proton transfer from the Fbutyl cation to the zeolite). Isobutylene will react with another t-butyl cation to form an isooctyl cation. At the same time, a feed alkene repeats the initiation step to form a secondary alkyl cation, which after accepting a hydride gives the Fbutyl cation and an -alkane. The overall reaction with a linear alkene CnH2n as the feed is summarized in reaction (10) ... [Pg.272]

The reaction schemes that can be proposed for these alkyls are basically analogous to those discussed for the tetramethyl compound. The initiation step should be Si-C bond rupture followed by various reactions of ethyl and propyl radicals, free radical attack on the parent alkyl and various polymerization processes. Significant chain reactions involving the alkyls are apparently homogeneous processes and lead to first-order kinetics. The rate coefficients for the... [Pg.243]

It would be desirable to be able to use data such as that given in Table 12 to predict Dt values for other methyl metallic alkyls and to set a pattern for ethyl and possibly higher alkyls. These dissociation energies should be approximately equal to the kinetic activation energy for the first stage of dissociation in a nonchain decomposition or to the activation energy of the initiation step in a chain decomposition. [Pg.253]

In isolated examples, reactions of specific amides and thioamides with dihalo-carbenes can take unusual pathways. Thus, for example, using procedure 7.1.1, A,A-dialkylamides are converted into a-chloromethylene derivatives of the amides [48]. The initial step in which the carbene attacks the carbonyl oxygen atom is the same as for the dehydration of the A-alkyl amides, but subsequent steps, for which there is evidence from 2H/ H labelling experiments, lead to the formation of an enamine and further reaction with the carbene (Scheme 7.34). [Pg.354]


See other pages where Alkylation initiation step is mentioned: [Pg.167]    [Pg.540]    [Pg.167]    [Pg.222]    [Pg.91]    [Pg.382]    [Pg.353]    [Pg.634]    [Pg.164]    [Pg.173]    [Pg.894]    [Pg.257]    [Pg.406]    [Pg.224]    [Pg.634]    [Pg.1207]    [Pg.39]    [Pg.121]    [Pg.253]    [Pg.797]    [Pg.261]    [Pg.500]    [Pg.17]    [Pg.41]    [Pg.98]    [Pg.108]    [Pg.261]    [Pg.49]    [Pg.586]    [Pg.598]    [Pg.138]    [Pg.526]    [Pg.724]   
See also in sourсe #XX -- [ Pg.479 ]




SEARCH



Alkylation step

Initiating step

Initiation step

Initiation step/initiator

© 2024 chempedia.info