Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy qualitative analysis

The use of vibrational Raman spectroscopy in qualitative analysis has increased greatly since the introduction of lasers, which have replaced mercury arcs as monochromatic sources. Although a laser Raman spectrometer is more expensive than a typical infrared spectrometer used for qualitative analysis, it does have the advantage that low- and high-wavenumber vibrations can be observed with equal ease whereas in the infrared a different, far-infrared, spectrometer may be required for observations below about 400 cm. ... [Pg.159]

Multidimensional gas chromatography has also been used in the qualitative analysis of contaminated environmental extracts by using spectral detection techniques Such as infrared (IR) spectroscopy and mass spectrometry (MS) (20). These techniques produce the most reliable identification only when they are dealing with pure substances this means that the chromatographic process should avoid overlapping of the peaks. [Pg.337]

Many methods are currently available for the qualitative analysis of anthocyanins including hydrolysis procedures," evaluation of spectral characteristics, mass spectroscopy (MS), " nuclear magnetic resonance (NMR), and Fourier transform infrared (FTIR) spectroscopy. - Frequently a multi-step procedure will be used for... [Pg.486]

Finally, it should be kept in mind that quantification is often problematic in surface analysis and characterization. Firstly because some techniques are not really suited for quantification, but also in cases such as infrared spectroscopy where one does not really know precisely how deep into the material one is probing. Although, there are many good examples of semi-quantitative applications that involve measuring relative band intensities that relate to changes in a surface property. However, for problem solving revealing qualitative differences is often sufficient information to be able to identify cause and move on to look for a potential solution. [Pg.677]

The phase composition of glycine crystal forms during the drying step of a wet granulation process has been studied, and a model developed for the phase conversion reactions [88], X-ray powder diffraction was used for qualitative analysis, and near-infrared spectroscopy for quantitative analysis. It was shown that when glycine was wet granulated with microcrystalline cellulose, the more rapidly the granulation... [Pg.274]

Infrared spectra differ markedly from the typical ultraviolet or visible spectrum. Infrared spectra are marked by many relatively sharp peaks and the spectra for different compounds are quite different. This makes infrared spectroscopy ideal for qualitative analysis of organic compounds. [Pg.127]

Infrared spectroscopy is often used for qualitative analysis, and its powerful selectivity means that it can be used as a detector. However, the absorption of the eluent molecules, particularly in reversed-phase separations, often interferes with the detection of analytes. The infrared absorption detector therefore requires mechanical assistance to eliminate the solvent or needs powerful computer assistance to eliminate the background signal. [Pg.20]

The aim of qualitative analysis of homopolymers by infrared spectroscopy is the elucidation of polymer structure and compound identification. This often entails the identification of the functional groups and the modes of attachment to the polymer backbone [2,4,25,26], In the case of mixtures, the aim of qualitative... [Pg.100]

In many pharmaceutical companies, quality control departments already use NIRS to identify formulations. Figure 23 illustrates a PLS calibration for the active content determination in a low-dose tablet. Once identity testing is passed, it is straightforward to consider as a next step the determination of active content in intact tablets. Thus, qualitative and quantitative analysis can be performed by acquiring a single NIR spectrum per sample. Two analytical techniques are replaced by one—nondestructive—NIR measurement. For this purpose near-infrared spectroscopy is a fast and powerful alternative to traditional analysis, which only remains necessary as reference analytics. [Pg.408]

Roggo, Y., Duponchel, L., and Huvenne, J.-P. (2003), Comparison of supervised pattern recognition methods with McNemar s statistical test Application to qualitative analysis of sugar beet by near-infrared spectroscopy, Anal. Chim. Acta, All, 187-200. [Pg.430]

An unknown substance, X, was isolated from rabbit muscle. Its structure was determined from the following observations and experiments. Qualitative analysis showed that X was composed entirely of C, H, and 0. A weighed sample of X was completely oxidized, and the H20 and C02 produced were measured this quantitative analysis revealed that X contained 40.00% C, 6.71% H, and 53.29% O by weight. The molecular mass of X, determined by mass spectrometry, was 90.00 u (atomic mass units see Box 1-1). Infrared spectroscopy showed that X contained one double bond. X dissolved readily in water to give an acidic solution the solution demonstrated optical activity when tested in a polarimeter. [Pg.43]

D.E. Chasan G. Norwitz, Qualitative Analysis of Primers, Tracers, Igniters, Incendiaries, Boosters and Delay Compositions on a Micro Scale by the Use of Infrared Spectroscopy , FA-T71-6-1 (1971), (AD 729 337)... [Pg.424]

It is concluded that IR spectroscopy provides information on qualitative as well quantitative analyses of rubbery materials, apart from their microstructures (that is, whether cis or trans, syndiotactic, atactic or isotactic). Different types of rubber blends (compatibilised or self-crosslinked) can be identified by the infrared spectroscopy. Synthesis, and degradation of polymers can also be followed by IR spectra. Mechanism of interaction between rubbers and fillers, can also be studied by IR-spectra. Different types of chemical reactions like the milling behaviour of rubbers, mechanism of adhesion and degradation can also be studied with the help of IR spectroscopy. The technique plays a great role in the product analysis under reverse engineering. [Pg.114]

In Chapter 6 we saw that, by itself, chromatography is not well suited to qualitative analysis thus it is often combined with other methods. The most successful combination has been GC with mass spectrometry (MS) GC s ability to separate materials and MS s ability to identify them has made the combination one of the most powerful analytical techniques available today. The other forms of chromatography are also being combined with MS and with infrared spectroscopy (IR). The resulting analytical methods are usually designated by their combined abbreviations (e.g., GC/MS or GC-MS) and are known as hyphenated techniques. The current status of these methods will be described briefly. [Pg.283]

Near-infrared absorption is therefore essentially due to combination and overtone modes of higher energy fundamentals, such as C-H, N-H, and O-H stretches, which appear as lower overtones and lower order combination modes. Since the NIR absorption of polyatomic molecules thus mainly reflects vibrational contributions from very few functional groups, NIR spectroscopy is less suitable for detailed qualitative analysis than IR, which shows all (active) fundamentals and the overtones and combination modes of low-energy vibrations. On the other hand, since the vibrational intensities of near-infrared bands are considerably lower than those of corresponding infrared bands, optical layers of reasonable size (millimeters, centimeters) may be transmitted in the NIR, even in the case of liquid samples, compared to the layers of pm size which are detected in the infrared. This has important consequences for the direct quantitative study of chemical reactions, chemical equilibria, and phase equilibria via NIR spectroscopy. [Pg.519]

Digital computers are being increasingly applied to infrared problems (L17). They can be used to obtain accurate spectra by correcting for known instrumental distortions (C26) and for resolution of overlapping bands. The corrected spectra can be filed to provide an index of fine structure for both qualitative and quantitative analysis. Although infrared spectroscopy at present is primarily a tool for structural and qualitative analysis, the increasing availability of computer facilities for complex correction procedures may make more widespread quantitative analysis possible. [Pg.336]

Rapid, accurate analysis of copolymer products is critical to the efficiency and economy of modern industrial copolymer production. Infrared spectroscopy is a well established technique for both qualitative and quantitative analysis of polymeric materials (1, 2). However, the coupling of relatively low-cost data handling hardware and software to a microprocessor-controlled infrared spectrophotometer is a relatively recent development. This coupling considerably enhances the level of performance one can expect from quantitative infrared spectroscopy. The result is that such systems greatly reduce the effort, expense, and time required for a given analysis and simultaneously provide improved accuracy, reliability, and precision. This paper will describe a recently developed, commercially available software system which will be referred to hereafter as QUANT. In the course of application research with the QUANT software a wide variety of copolymer systems... [Pg.185]

Qualitative analysis This can be considered in terms of the identification of the constituents of a sample without regard to their relative amounts . Often it refers to elemental analysis, although it can refer to different chemicals within a mixture or even the identification of different functional groups (e.g. by infrared spectroscopy). [Pg.283]

Raman spectroscopy is by no means a new technique, although it is not as widely known or used by chemists as the related technique of infrared spectroscopy. However, following developments in the instrumentation over the last 20 years or so Raman spectroscopy appears to be having something of a rebirth. Raman, like infrared, may be employed for qualitative analysis, molecular structure determination, functional group identification, comparison of various physical properties such as crystallinity, studies of molecular interaction and determination of thermodynamic properties. [Pg.294]

Mid-infrared (IR) spectroscopy is a well-established technique for the identification and structural analysis of chemical compounds. The peaks in the IR spectrum of a sample represent the excitation of vibrational modes of the molecules in the sample and thus are associated with the various chemical bonds and functional groups present in the molecules. Thus, the IR spectrum of a compound is one of its most characteristic physical properties and can be regarded as its "fingerprint." Infrared spectroscopy is also a powerful tool for quantitative analysis as the amount of infrared energy absorbed by a compound is proportional to its concentration. However, until recently, IR spectroscopy has seen fairly limited application in both the qualitative and the quantitative analysis of food systems, largely owing to experimental limitations. [Pg.93]

The ultraviolet-visible spectra of most compounds are of limited value for qualitative analysis and have been largely superseded by the more definitive infrared and mass spectroscopies. Qualitative analytical use of ultraviolet-visible spectra has largely involved describing compounds in terms of the positions and molar absorptivities of their absorption maxima, occasionally including their absorption minima. Indeed, some organic compounds are still characterized in terms of the number of peaks in the UV-visible spectrum and their absorbance ratios. This is usually the case in phytochemistry and photodiode array chromatography and when the analyst has a limited range of compounds to work with whose spectra are known to differ. In the pharmacopeias, however, absorbance ratios have found use in identity tests, and are referred to as Q-values in the U.S. Pharmacopia (USP). [Pg.231]

Luypaert, 1., Zhang, M. H., and Massart, D. L. 2003. Feasibility study for the use of near infrared spectroscopy in the qualitative and quantitative analysis of green tea. Camellia sinensis L. Anal. Chim. Acta 478 303-12. [Pg.107]


See other pages where Infrared spectroscopy qualitative analysis is mentioned: [Pg.8]    [Pg.158]    [Pg.170]    [Pg.241]    [Pg.82]    [Pg.250]    [Pg.315]    [Pg.142]    [Pg.267]    [Pg.56]    [Pg.98]    [Pg.158]    [Pg.231]    [Pg.158]    [Pg.313]    [Pg.1503]    [Pg.408]    [Pg.29]    [Pg.1713]    [Pg.69]    [Pg.290]    [Pg.82]    [Pg.67]    [Pg.24]   
See also in sourсe #XX -- [ Pg.3414 ]

See also in sourсe #XX -- [ Pg.222 ]

See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Analysis spectroscopy

Infrared analysis

Qualitative analysis

© 2024 chempedia.info