Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inductively coupled plasma atomic determination

Pt content determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Monolayer uptakes (P = 0) determined at 295 K. [Pg.157]

Magnesium deficiency has been long recognized, but hypermagnesia also occurs (Anderson and Talcott 1994). Magnesium can be determined in fluids by FAAS, inductively coupled plasma atomic emission spectrometry (ICP-AES) and ICP-MS. In tissue Mg can be determined directly by solid sampling atomic absorption spectrometry (SS-AAS) (Herber 1994a). Both Ca and Mg in plasma/serum are routinely determined by photometry in automated analyzers. [Pg.202]

The chemical composition of the samples was determined using an inductively Coupled plasma atomic emission spectrometer (ICP-AES) JY 38 from Jobin Yvon. Specific surface area values were determined by BET method using a Micromeritics Instrument Corp. FlowSorb 2300. The basicity of the materials was studied by temperature programmed desorption (TPD) of C02 used as a probe molecule. The equipment was described in a previous work [7]. FTIR spectra of pellets pressed at 2.5xl08 Pa were recorded with a Vector 22 spectrometer from Brucker. The samples were diluted with KBr (lOOmg KBr - 1.5mg of the sample). [Pg.298]

Inductively coupled plasma atomic emission spectrometry has also been used to determine sulfate directly in non-saline waters [225]. [Pg.105]

Measurement techniques that can be employed for the determination of trace metals include atomic absorption spectrometry, anodic stripping voltammetry, differential pulse cathodic stripping voltammetry, inductively coupled plasma atomic emission spectrometry, liquid chromatography of the metal chelates with ultraviolet-visible absorption and, more recently, inductively coupled plasma mass spectrometry. [Pg.128]

Brenner et al. [ 169] applied inductively coupled plasma atomic emission spectrometry to the determination of calcium (and sulfate) in brines. The principal advantage of the technique was that it avoided tedious matrix matching of calibration standards when sulfate was determined indirectly by flame techniques. It also avoided time-consuming sample handling when the samples were processed by the gravimetric method. The detection limit was 70 ig/l and a linear dynamic range of 1 g/1 was obtained for sulfate. [Pg.156]

Brief mention has been made, particularly in connection with the inductively coupled plasma atomic absorption spectrometric technique, of the need to preconcentrate seawater samples prior to the determination of metals, in order to achieve adequate detection limits. [Pg.303]

Silicon has been determined directly in seawater by inductively coupled plasma atomic emission spectrometry with a detection limit of 0.3 xm silicon [42],... [Pg.484]

Table 21 reports the ash content and ash composition (determined by inductively coupled plasma-atomic emission spectroscopy, ICP-AES) for all of the calcined cokes used to fabricate the test graphites. It can be seen that the amount of ash and its make-up are variable, but are within the range observed for petroleum-based calcined cokes. Although the ash contents in all of the calcined cokes appear rather high, these materials may still be acceptable because many of the metallic species are driven off during graphitization. This aspect is addressed in the next section. [Pg.247]

Organogermanium compounds can be mineralized by wet oxidative digestion for 4 h at 70°C, in aqueous potassium persulphate, at pH 12. After dilution to an adequate concentration germanium can be determined by ICP-AES (inductively coupled plasma atomic emission spectrometry)9. [Pg.344]

Owing to their superior fluorescent yield, heavy elements ordinarily yield considerably more intense XRF bands than the light elements. This feature can be exploited to determine the concentration of inorganic species in a sample, or the concentration of a compound that contains a heavy element in some matrix. Many potential XRF applications have never been developed owing to the rise of atomic spectroscopic methods, particularly inductively coupled plasma atomic emission spectrometry [74]. Nevertheless, under the right set of circumstances, XRF analysis can be profitably employed. [Pg.225]

Roberts, N.B, Walsh, H.P.J., Klenerman, L., Kelly, S.A., and Helliwell, T. R. (1996). Determination of elements in human femoral bone using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectroscopy 11 133-138. [Pg.381]

Sheppard, B. S., Heitkemper, D. T., and Gaston, C. M. (1994). Microwave digestion for the determination of arsenic, cadmium and lead in seafood products by inductively coupled plasma-atomic emission and mass spectrometry. Analyst 119 1683-1686. [Pg.383]

Tamba, M. G., del M., Falciani, R., Lopez, T. D., and Coedo, A. G. (1994). One-step microwave digestion procedures for the determination of aluminium in steels and iron ores by inductively coupled plasma atomic emission spectrometry. Analyst 119 2081-2085. [Pg.385]

It is seen by examination of Table 1.11(b) that a wide variety of techniques have been employed including spectrophotometry (four determinants), combustion and wet digestion methods and inductively coupled plasma atomic emission spectrometry (three determinants each), atomic absorption spectrometry, potentiometric methods, molecular absorption spectrometry and gas chromatography (two determinants each), and flow-injection analysis and neutron activation analysis (one determinant each). Between them these techniques are capable of determining boron, halogens, total and particulate carbon, nitrogen, phosphorus, sulphur, silicon, selenium, arsenic antimony and bismuth in soils. [Pg.96]

Atomic absorption spectrometric methods and, more recently, the inductively coupled plasma atomic emission method, are, of course, mandatory if determination of elements is required (arsenic, selenium, boron, phosphorus and silicon). [Pg.115]

Brzezinska-Paudyn et al. [124] compared results obtained in determinations of arsenic by conventional atomic emission spectrometry, flow-injection/hydride generation inductively coupled plasma atomic... [Pg.351]

For the determination of arsenic by conventional inductively coupled plasma atomic emission spectrometry the samples were digested in closed Teflon vessels, similar to the technique described by Brzezinska et al. [126]. [Pg.352]

These methods were used to determine arsenic in certified sediments (Table 12.15). Conventional inductively coupled plasma atomic emission spectrometry is satisfactory for all types of samples, but its usefulness was limited to concentrations of arsenic greater than 5pg g-1 dry weight. Better detection limits were achieved using the flow-injection-hydride generation inductively coupled plasma technique in which a coefficient of variation of about 2% for concentrations of lOpg g 1 were achieved. [Pg.353]

All four dissolution procedures studied were found to be suitable for arsenic determinations in biological marine samples, but only one (potassium hydroxide fusion) yielded accurate results for antimony in marine sediments and only two (sodium hydroxide fusion or a nitricperchloric-hydrofluoric acid digestion in sealed Teflon vessels) were appropriate for determination of selenium in marine sediments. Thus, the development of a single procedure for the simultaneous determination of arsenic, antimony and selenium (and perhaps other hydride-forming elements) in marine materials by hydride generation inductively coupled plasma atomic emission spectrometry requires careful consideration not only of the oxidation-reduction chemistry of these elements and its influence on the hydride generation process but also of the chemistry of dissolution of these elements. [Pg.357]

The laser ablation inductively coupled plasma atomic emission spectrometry procedure described by Arrowsmith [127] discussed in section 12.10.2.4 has been applied to the determination of down to 0.2pg gy1 of antimony in sediments. [Pg.360]

The rhodium catalyst was recycled batch-wise four times. It was found that a short induction period occurred during the first reaction cycle. The following cycles showed a constant rate and no loss of activity was detected. A ligand-to-rhodium ratio of 5 1 led to a constant yield of 95% per cycle after 1 h. Within the four cycles a total turnover number of 1000 with a maximum turnover frequency of 234 h was achieved. The leaching of rhodium and phosphorus into the aqueous layer was determined by inductively coupled plasma atomic emission spectrometry. Rhodium leaching amounted to 14.2 ppm in the first run, then dropped to 3.6 ppm (second run) and reached values of 0.95 and 0.63 ppm in the third and fourth runs, respectively. [Pg.106]

In reference 190, the authors describe the spectroscopic and X-ray crystallographic techniques they used to determine the pMMO structure. First, EPR and EX AFS experiments indicated a mononuclear, type 2 Cu(II) center hgated by histidine residues and a copper-containing cluster characterized by a 2.57 A Cu-Cu interaction. A functional iron center was also indicated by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES). ICP-AES uses inductively coupled plasma to produce excited atoms that emit electromagnetic radiation at a wavelength characteristic of a particular element. The intensity of this emission is indicative of the concentration of the element (iron in this case) within the sample. [Pg.464]

Determination of Trace Elements in Drinking Water by Axially Viewed Inductively Coupled Plasma-Atomic Emission Spectrometry... [Pg.1203]

Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic... [Pg.1203]

Determination of Trace Inorganic Toxic Substances by Inductively Coupled Plasma-Atomic Emission Spectroscopy... [Pg.113]

A binder—free Na-Y zeolite with Si/Al ratio of 2.29 was obtained from Strem Chemical Co., La,Na—Y and Cs,Na-Y zeolites were prepared by exchanging Na-Y zeolite with LaCls and CsCl solution at room temperature. The percentage of metal ion exchanged in a zeolite has been determinated by Inductively-Coupled-Plasma Atomic Emission Spectroscopy and the number is used as prefix for the samples, e.g., Cs exchanged level of 667. is represented as 66Cs,Na-Y sample. [Pg.124]

Nickel is normally present at very low levels in biological samples. To determine trace nickel levels in these samples accurately, sensitive and selective methods are required. Atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES), with or without preconcentration or separation steps, are the most common methods. These methods have been adopted in standard procedures by EPA, NIOSH, lARC, and the International Union of Pure and Applied... [Pg.207]

Martin TD, Brockhoff CA, Creed JT, et al. 1992. Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. In Smoley KC, ed. Methods for the determination of metals in environmental samples. Boca Raton, FL CRC Press, 33-78. [Pg.242]

Other frequently used methods for determining fluoride include ion and gas chromatography [150,204,205] and aluminium monofluoride (AIF) molecular absorption spectrometry [206,207]. Less frequently employed methods include enzymatic [208], catalytic [209], polarographic [210] and voltammetric methods [211], helium microwave-induced [212] or inductively coupled plasma atomic emission spectrometry [213], electrothermal atomic absorption spectrometry [214], inductively coupled plasma-mass spectrometry [215], radioactivation [216], proton-induced gamma emission [217], near-infrared spectroscopy [218] and neutron activation analysis [219]. [Pg.534]


See other pages where Inductively coupled plasma atomic determination is mentioned: [Pg.4]    [Pg.332]    [Pg.247]    [Pg.226]    [Pg.443]    [Pg.279]    [Pg.190]    [Pg.357]    [Pg.265]    [Pg.673]    [Pg.143]    [Pg.376]    [Pg.62]    [Pg.301]    [Pg.58]    [Pg.57]   


SEARCH



Atomic coupling

Coupled Plasma

Induction-coupled plasma

Inductive coupled plasma

Inductive coupling

Inductively couple plasma

Inductively coupled

Inductively coupled plasma atomic

Metals, determination inductively coupled plasma atomic absorption spectrometry

Plasma determination

© 2024 chempedia.info