Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indium conditioning

In summary, the groups of Espenson and Loh observe catalysis of Diels-Alder reactions involving monodentate reactants by Lewis acids in water. If their observations reflect Lewis-acid catalysis, involvirg coordination and concomitant activation of the dienophile, we would conclude that Lewis-acid catalysis in water need not suffer from a limitation to chelating reactants. This conclusion contradicts our observations which have invariably stressed the importance of a chelating potential of the dienophile. Hence it was decided to investigate the effect of indium trichloride and methylrhenium trioxide under homogeneous conditions. [Pg.109]

Sulfates. Indium metal and its oxides dissolve in warm sulfuric acid to give a solution of the trisulfate [13464-82-9], In2(S0 2- It is a white, crystalline, deUquescent soHd, readily soluble in water that forms double salts with alkaLi sulfates and some organic substituted ammonium bases. Concentration of the acidified trisulfate solution produces indium acid sulfate crystal [57344-73-7], In(HS0 2> other reaction conditions give basic sulfates. [Pg.81]

Sulfides. The main sulfide of indium is I1I2S2 [12030-24-9], which can be prepared by heating the metal with sulfur or by precipitation from weak acid solutions of indium salts by H2S. Precipitated I1I2S2 varies in color from yellow to red-brown, and in crystal size depending on formation conditions. It dissolves in acids and sodium sulfide solution. Other reported sulfides of indium ate InS [12030-14-7], a red-brown soHd In2S [12196-52-0], and In S [12142-00-5]. [Pg.81]

Indium also combines with nonmetaUic elements and with metalloids such as N, P, Sb, As, Te, and Se. Many of the latter compounds ate semiconducting as ate the oxide and sulfide. Indium antimonide [1312-41 -0], InSb indium arsenide [1303-11-3], In As and indium phosphide [22398-80-7], InP, ate the principal semiconducting compounds. These ate all prepared by direct combination of the highly purified elements at elevated temperature under controlled conditions. [Pg.81]

The Model 412 PWR uses several control mechanisms. The first is the control cluster, consisting of a set of 25 hafnium metal rods coimected by a spider and inserted in the vacant spaces of 53 of the fuel assembhes (see Fig. 6). The clusters can be moved up and down, or released to shut down the reactor quickly. The rods are also used to (/) provide positive reactivity for the startup of the reactor from cold conditions, (2) make adjustments in power that fit the load demand on the system, (J) help shape the core power distribution to assure favorable fuel consumption and avoid hot spots on fuel cladding, and (4) compensate for the production and consumption of the strongly neutron-absorbing fission product xenon-135. Other PWRs use an alloy of cadmium, indium, and silver, all strong neutron absorbers, as control material. [Pg.217]

Of the elements commonly found in lead alloys, zinc and bismuth aggravate corrosion in most circumstances, while additions of copper, tellurium, antimony, nickel, silver, tin, arsenic and calcium may reduce corrosion resistance only slightly, or even improve it depending on the service conditions. Alloying elements that are of increasing importance are calcium especially in maintenance-free battery alloys and selenium, or sulphur combined with copper as nucleants in low antimony battery alloys. Other elements of interest are indium in anodesaluminium in batteries and selenium in chemical lead as a grain refiner ". [Pg.721]

Certain other metal ions also exhibit catalysis in aqueous solution. Two important criteria are rate of ligand exchange and the acidity of the metal hydrate. Metal hydrates that are too acidic lead to hydrolysis of the silyl enol ether, whereas slow exchange limits the ability of catalysis to compete with other processes. Indium(III) chloride is a borderline catalysts by these criteria, but nevertheless is effective. The optimum solvent is 95 5 isopropanol-water. Under these conditions, the reaction is syn selective, suggesting a cyclic TS.63... [Pg.84]

The reaction can also be carried out using indium metal. Under these conditions InCl3 is presumably generated in situ.135... [Pg.831]

In 1991, Li and Chan reported the use of indium to mediate Barbier-Grignard-type reactions in water (Eq. 8.49).108 When the allylation was mediated by indium in water, the reaction went smoothly at room temperature without any promoter, whereas the use of zinc and tin usually requires acid catalysis, heat, or sonication. The mildness of the reaction conditions makes it possible to use the indium method to allylate a methyl ketone in the presence of an acid-sensitive acetal functional group (Eq. 8.50). Furthermore, the coupling of ethyl 2-(bromomethyl)acrylate with carbonyl compounds proceeds equally well under the same reaction conditions, giving ready access to various hydroxyl acids including, for example, sialic acids. [Pg.236]

Indium-mediated allylation of an unreactive halide with an aldehyde132 was used to synthesize an advanced intermediate in the synthesis of antillatoxin,133 a marine cyanobacteria (Lyngbya majus-cula) that is one of the most ichthyotoxic compounds isolated from a marine plant to date. In the presence of a lanthanide triflate, the indium-mediated allylation of Z-2-bromocrotyl chloride and aldehyde in saturated NH4C1 under sonication yielded the desired advanced intermediate as a 1 1 mixture of diastereomers in 70% yield. Loh et al.134 then changed the halide compound to methyl (Z)-2-(bromomethyl)-2-butenoate and coupled it with aldehyde under the same conditions to yield the desired homoallylic alcohol in 80% yield with a high 93 7 syn anti selectivity (Eq. 8.55). [Pg.242]

A new method has been developed for the synthesis of ( )-3-methyl Baylis-Hillman-type adducts with high E/Z (>93%) selectivity in modest to good yields. The process consists of two steps an indium-mediated allylation reaction and a simple base-catalyzed isomerization step (Eq. 8.61). Various aldehydes were allylated with allyl bromides using indium under very mild conditions in aqueous media and thus converted to the Baylis-Hillman-type adducts.150... [Pg.248]

A chemoenzymatic methodology has been developed using indium-mediated allylation (and propargylation) of heterocyclic aldehydes under aqueous conditions followed by Pseudomonas cepacia lipase-catalyzed enantioselective acylation of racemic homoallylic and homo-propargylic alcohols in organic media.192... [Pg.257]

Propargylation (allylation) of diphenylmethyl 6-oxopenicillanate and 7-oxocephalosporanate was accomplished by reacting the corresponding bromides in the presence of indium or zinc in moderate yields in aqueous conditions.206... [Pg.259]

Reaction with Propargyl Halides. The indium-mediated coupling of propargyl bromide with a variety of imines and imine oxides afforded homo-propargylamine derivatives in aqueous media under mild conditions.78 Propargylation of glyoxylic oxime ether in the presence of a catalytic amount of palladium(O) complex and indium(I) iodide in aqueous media was also studied (Eq.11.47).79... [Pg.357]

Clerici and Porta reported that phenyl, acetyl and methyl radicals add to the Ca atom of the iminium ion, PhN+Me=CHMe, formed in situ by the titanium-catalyzed condensation of /V-methylanilinc with acetaldehyde to give PhNMeCHMePh, PhNMeCHMeAc, and PhNMeCHMe2 in 80% overall yield.83 Recently, Miyabe and co-workers studied the addition of various alkyl radicals to imine derivatives. Alkyl radicals generated from alkyl iodide and triethylborane were added to imine derivatives such as oxime ethers, hydrazones, and nitrones in an aqueous medium.84 The reaction also proceeds on solid support.85 A-sulfonylimines are also effective under such reaction conditions.86 Indium is also effective as the mediator (Eq. 11.49).87 A tandem radical addition-cyclization reaction of oxime ether and hydrazone was also developed (Eq. 11.50).88 Li and co-workers reported the synthesis of a-amino acid derivatives and amines via the addition of simple alkyl halides to imines and enamides mediated by zinc in water (Eq. 11.51).89 The zinc-mediated radical reaction of the hydrazone bearing a chiral camphorsultam provided the corresponding alkylated products with good diastereoselectivities that can be converted into enantiomerically pure a-amino acids (Eq. 11.52).90... [Pg.358]

Hosomi et al. reported in 2004 a similar indium-catalyzed reaction employing In(OAc)3 (10mol%) and PhSiH3 (100mol%). Under these conditions, the intramolecular coupling of 63 delivers 64 in 90% yield with high czs-selectivity (Scheme 38) [68,69]. [Pg.139]

Indium(I) iodide serves as a two electron reducing agent to promote a Ni-catalyzed allylation of benzaldehyde with 1,3-dienes [23]. In the presence of a catalytic amount of Ni(acac)2 and a stoichiometric amount of Ini, 1,3-butadiene reacts with 2 equiv. of benzaldehyde to provide a mixture of a 1,4-diol 28 and 1,6-diol 29 and/or with 1 equiv. of benzaldehyde to give 27 (Eq. 8). The product distribution of 27-29 markedly depends on the solvent, the ligand, and the additive employed (Table 2). The combination of Ni(acac)2, PPI13, and 3 equiv. of water in DMI provides the 1,4-diol 28 as the major product (run 1). Under similar conditions, dppb dramatically changed the reaction course and the mono-allylation product 27 is produced exclusively (run 2). In contrast to these, the reaction in dry THF provides the 1,6-diol 29 in excellent yield (rim 3). [Pg.190]

Reduction of carbon dioxide takes place at various metal electrodes. The main products are formic acid in aqueous solutions and oxalate, CO, and formic acid in nonaqueous solutions. An indium electrode is the most potential saving for C02 reduction. Due to the difference in optimum conditions between those for C02 reduction to formic acid and those for formic acid reduction to further reduced products, direct reduction of C02 in aqueous solutions without a catalyst to highly reduced products seems to be difficult at metal electrodes. However, catalytic effects of metal electrodes themselves have recently become more clear for example, on Cu, methane was detected, while on Ag and Au, CO was produced effectively in aqueous solutions. Furthermore, at a Mo electrode, methanol was obtained. The power efficiency is, however, still low at any electrode. [Pg.390]

As shown in Eq. 6.59, Rapoport has prepared sinefungin, nucleoside antibiotics, via nitro-aldol reaction, dehydration, and reduction with Zn in acetic add.115a [i-Nitrostyrenes are selectivity reduced to the corresponding oximes by indium metal in aqueous methanol under neutral conditions.11515... [Pg.176]

Related to the nitrile oxide cycloadditions presented in Scheme 6.206 are 1,3-dipolar cycloaddition reactions of nitrones with alkenes leading to isoxazolidines. The group of Comes-Franchini has described cycloadditions of (Z)-a-phenyl-N-methylnitrone with allylic fluorides leading to enantiopure fluorine-containing isoxazolidines, and ultimately to amino polyols (Scheme 6.207) [374]. The reactions were carried out under solvent-free conditions in the presence of 5 mol% of either scandium(III) or indium(III) triflate. In the racemic series, an optimized 74% yield of an exo/endo mixture of cycloadducts was obtained within 15 min at 100 °C. In the case of the enantiopure allyl fluoride, a similar product distribution was achieved after 25 min at 100 °C. Reduction of the isoxazolidine cycloadducts with lithium aluminum hydride provided fluorinated enantiopure polyols of pharmaceutical interest possessing four stereocenters. [Pg.238]


See other pages where Indium conditioning is mentioned: [Pg.46]    [Pg.48]    [Pg.81]    [Pg.203]    [Pg.251]    [Pg.5]    [Pg.21]    [Pg.224]    [Pg.604]    [Pg.310]    [Pg.86]    [Pg.152]    [Pg.115]    [Pg.115]    [Pg.119]    [Pg.255]    [Pg.173]    [Pg.246]    [Pg.77]    [Pg.39]    [Pg.172]    [Pg.205]    [Pg.247]    [Pg.263]    [Pg.348]    [Pg.361]    [Pg.92]    [Pg.231]    [Pg.330]    [Pg.552]    [Pg.147]   


SEARCH



© 2024 chempedia.info