Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indicator electrodes potentiometric

Finding the End Point Potentiometrically Another method for locating the end point of a redox titration is to use an appropriate electrode to monitor the change in electrochemical potential as titrant is added to a solution of analyte. The end point can then be found from a visual inspection of the titration curve. The simplest experimental design (Figure 9.38) consists of a Pt indicator electrode whose potential is governed by the analyte s or titrant s redox half-reaction, and a reference electrode that has a fixed potential. A further discussion of potentiometry is found in Chapter 11. [Pg.339]

Initial attempts at developing precipitation titration methods were limited by a poor end point signal. Finding the end point by looking for the first addition of titrant that does not yield additional precipitate is cumbersome at best. The feasibility of precipitation titrimetry improved with the development of visual indicators and potentiometric ion-selective electrodes. [Pg.354]

Potentiometric measurements are made using a potentiometer to determine the difference in potential between a working or, indicator, electrode and a counter electrode (see Figure 11.2). Since no significant current flows in potentiometry, the role of the counter electrode is reduced to that of supplying a reference potential thus, the counter electrode is usually called the reference electrode. In this section we introduce the conventions used in describing potentiometric electrochemical cells and the relationship between the measured potential and concentration. [Pg.466]

Also, by convention, potentiometric electrochemical cells are defined such that the indicator electrode is the cathode (right half-cell) and the reference electrode is the anode (left half-cell). [Pg.467]

The potential of the indicator electrode in a potentiometric electrochemical cell is proportional to the concentration of analyte. Two classes of indicator electrodes are used in potentiometry metallic electrodes, which are the subject of this section, and ion-selective electrodes, which are covered in the next section. [Pg.473]

If the copper electrode is the indicator electrode in a potentiometric electrochemical cell that also includes a saturated calomel reference electrode... [Pg.474]

Ey and E2 are the indicator electrodes. These may consist of a tungsten pair for a biamperometric end point for an amperometric end point they may both be of platinum foil or one can be platinum and the other a saturated calomel reference electrode. The voltage impressed upon the indicator electrodes is supplied by battery B (ca 1.5 volts) via a variable resistance Rs N records the indicator current. For a potentiometric end point Ey and E2 may consist of either platinum-tungsten bimetallic electrodes, or Ey may be an S.C.E. and E2... [Pg.538]

Apparatus. Use the apparatus of Section 14.7. The generator anode is of pure silver foil (3 cm x 3 cm) the cathode in the isolated compartment is a platinum foil (3 cm x 3 cm) bent into a half-cylinder. For the potentiometric end point detection, use a short length of silver wire as the indicator electrode the electrical connection to the saturated calomel reference electrode is made by means of an agar-potassium nitrate bridge. [Pg.544]

The indicator electrode employed in a potentiometric titration will, of course, be dependent upon the type of reaction which is under investigation. Thus, for an acid-base titration, the indicator electrode is usually a glass electrode (Section 15.6) for a precipitation titration (halide with silver nitrate, or silver with chloride) a silver electrode will be used, and for a redox titration [e.g. iron(II) with dichromate] a plain platinum wire is used as the redox electrode. [Pg.554]

To measure the e.m.f. the electrode system must be connected to a potentiometer or to an electronic voltmeter if the indicator electrode is a membrane electrode (e.g. a glass electrode), then a simple potentiometer is unsuitable and either a pH meter or a selective-ion meter must be employed the meter readings may give directly the varying pH (or pM) values as titration proceeds, or the meter may be used in the millivoltmeter mode, so that e.m.f. values are recorded. Used as a millivoltmeter, such meters can be used with almost any electrode assembly to record the results of many different types of potentiometric titrations, and in many cases the instruments have provision for connection to a recorder so that a continuous record of the titration results can be obtained, i.e. a titration curve is produced. [Pg.574]

In such reactions, even though the indicator electrode functions reversibly, the maximum value of AE/AV will not occur exactly at the stoichiometric equivalence point. The resulting titration error (difference between end point and equivalence point) can be calculated or can be determined by experiment and a correction applied. The titration error is small when the potential change at the equivalence point is large. With most of the reactions used in potentiometric analysis, the titration error is usually small enough to be neglected. It is assumed that sufficient time is allowed for the electrodes to reach equilibrium before a reading is recorded. [Pg.578]

The equipment required for direct potentiometric measurements includes an ion-selective electrode (ISE), a reference electrode, and a potential-measuring device (a pH/millivolt meter that can read 0.2mV or better) (Figure 5-1). Conventional voltmeters cannot be used because only very small currents are allowed to be drawn. The ion-selective electrode is an indicator electrode capable of selectively measuring the activity of a particular ionic species. Such electrodes exhibit a fast response and a wide linear range, are not affected by color or turbidity, are not... [Pg.140]

The most reliable method is probably the potentiometric titration procedure first reported by Dilley [101]. This procedure has the added advantage of avoiding the use of trichloromethane. The procedure for the manufacture of the membrane-indicating electrode has been modified and a simplified description is given below. Commercial variants are also becoming available. [Pg.432]

Among potentiometric methods of analysis that are important for ecological applications, the one most widely used is that of pH measurements with an indicator electrode whose potential is a function of the hydrogen ion concentration. More recently, ion-selective electrodes reversible to other cations such as those of heavy metals have become available. [Pg.407]

Potentiometric methods are based on the measurement of the potential of an electrochemical cell consisting of two electrodes immersed in a solution. Since the cell potential is measured under the condition of zero cmrent, usually with a pH/mV meter, potentiometry is an equilibrium method. One electrode, the indicator electrode, is chosen to respond to a particular species in solution whose activity or concentration is to be measured. The other electrode is a reference electrode whose half-cell potential is invariant. [Pg.3]

One of the most fruitful uses of potentiometry in analytical chemistry is its application to titrimetry. Prior to this application, most titrations were carried out using colour-change indicators to signal the titration endpoint. A potentiometric titration (or indirect potentiometry) involves measurement of the potential of a suitable indicator electrode as a function of titrant volume. The information provided by a potentiometric titration is not the same as that obtained from a direct potentiometric measurement. As pointed out by Dick [473], there are advantages to potentiometric titration over direct potentiometry, despite the fact that the two techniques very often use the same type of electrodes. Potentiometric titrations provide data that are more reliable than data from titrations that use chemical indicators, but potentiometric titrations are more time-consuming. [Pg.668]

In fact, any type of titration can be carried out potentiometrically provided that an indicator electrode is applied whose potential changes markedly at the equivalence point. As the potential is a selective property of both reactants (titrand and titrant), notwithstanding an appreciable influence by the titration medium [aqueous or non-aqueous, with or without an ISA (ionic strength adjuster) or pH buffer, etc.] on that property, potentiometric titration is far more important than conductometric titration. Moreover, the potentiometric method has greater applicability because it is used not only for acid-base, precipitation, complex-formation and displacement titrations, but also for redox titrations. [Pg.99]

Again for the titration of Ce(IV) with Fe(II) we shall now consider constant-potential amperometry at one Pt indicator electrode and do so on the basis of the voltammetric curves in Fig. 3.71. One can make a choice from three potentials eu e2 and e3, where the curves are virtually horizontal. Fig. 3.74 shows the current changes concerned during titration at e1 there is no deflection at all as it concerns Fe(III) and Fe(II) only at e2 and e3 there is a deflection at A = 1 but only to an extent determined by the ratio of the it values of the Ce and Fe redox couples. The establishment of the deflection point is easiest at e2 as it simply agrees with the intersection with the zero-current abscissa as being the equivalence point in fact, no deflection is needed in order to determine this intersection point, but if there is a deflection, the amperometric method is not useful compared with the non-faradaic potentiometric titration unless the concentration of analyte is too low. [Pg.214]

Whereas in many instances potentiometric non-aqueous titrations of acids can show anomalies24 depending on the type of solvents and/or electrodes (owing to preferential adsorption of ions, ion pairs or complexes on the highly polar surface of the indicator electrode, or even adherence of precipitates on the latter), conductometric non-aqueous titrations, in contrast, although often accompanied by precipitate formation30, are not hindered by such phenomena sometimes, just as in aqueous titrations, the conductometric end-point can even be based on precipitate formation34. [Pg.268]

Conductometric titrations. Van Meurs and Dahmen25-30,31 showed that these titrations are theoretically of great value in understanding the ionics in non-aqueous solutions (see pp. 250-251) in practice they are of limited application compared with the more selective potentiometric titrations, as a consequence of the low mobilities and the mutually less different equivalent conductivities of the ions in the media concerned. The latter statement is illustrated by Table 4.7108, giving the equivalent conductivities at infinite dilution at 25° C of the H ion and of the other ions (see also Table 2.2 for aqueous solutions). However, in practice conductometric titrations can still be useful, e.g., (i) when a Lewis acid-base titration does not foresee a well defined potential jump at an indicator electrode, or (ii) when precipitations on the indicator electrode hamper its potentiometric functioning. [Pg.301]

Neither the usual membrane ISEs nor the gas-sensing electrodes, in which their internal indicator electrode functions as a zero-current potentiometric half-cell, are under consideration here. [Pg.369]

Figure 4. Potentiometric titrations in MeCN (0.1M TEAP) of (a) 0.012 M Cu1(MeCN)4CIO4 with 1.1M "OH (Cu indicator electrode), (b) 0.020M AgC104 with 1.2 M "OH (Ag indicator electrode), and (c) 0.0072 M Au+ with 0,11 M "OH (Au indicator electrode). Figure 4. Potentiometric titrations in MeCN (0.1M TEAP) of (a) 0.012 M Cu1(MeCN)4CIO4 with 1.1M "OH (Cu indicator electrode), (b) 0.020M AgC104 with 1.2 M "OH (Ag indicator electrode), and (c) 0.0072 M Au+ with 0,11 M "OH (Au indicator electrode).
The metal indicator electrodes for the potentiometric titrations respond to the M+/M couple prior to the equivalence point, and to the MOH/M, "OH couple after the equivalence point... [Pg.477]

As illustrated in Fig. 18a.l, all potentiometric measurements need an indicator electrode, a reference electrode and a voltmeter. As we see later in this chapter, the indicator electrode is most commonly an ISE. [Pg.628]

Fig. 18a.l. Schematic diagram of a potentiometric cell with an ion-selective electrode (ISE) as the indicator electrode. EM is the electrical potential of the sensing membrane and IFS the internal filling solution. [Pg.628]

As mentioned previously, electroanalytical techniques that measure or monitor electrode potential utilize the galvanic cell concept and come under the general heading of potentiometry. Examples include pH electrodes, ion-selective electrodes, and potentiometric titrations, each of which will be described in this section. In these techniques, a pair of electrodes are immersed, the potential (voltage) of one of the electrodes is measured relative to the other, and the concentration of an analyte in the solution into which the electrodes are dipped is determined. One of the immersed electrodes is called the indicator electrode and the other is called the reference electrode. Often, these two electrodes are housed together in one probe. Such a probe is called a combination electrode. [Pg.399]

In addition, potentiometric titration methods exist in which an electrode other than an ion-selective electrode is used. A simple platinum wire surface can be used as the indicator electrode when an oxidation-reduction reaction occurs in the titration vessel. An example is the reaction of Ce(IV) with Fe(II) ... [Pg.406]

Part—III exclusively treats Electrochemical Methods invariably and extensively used in the analysis of pharmaceutical substances in the Official Compendia. Two important methods, namely potentiometric methods (Chapter 16) deal with various types of reference electrodes and indicator electrodes, automatic titrator besides typical examples of nitrazepam, allopurinol and clonidine hydrochloride. Amperometric methods (Chapter 17) comprise of titrations involving dropping-mercury electrode, rotating—platinum electrode and twin-polarized microelectrodes (i.e., dead-stop-end-point method). [Pg.540]

Epoxy-based membrane of 2-[(4-chloro-phenylimino)-methyl]-phenol reveals a far Nemstian slope of 43 mV per decade for Pb+2 over a wide concentration range CIO 6 to 10 1 mol dm-3). The response time of the electrode is quite low (< 10 sec) and could be used for a period of 2 months with a good reproducibility. The proposed electrode reveals very high selectivity for Pb(II) in the presence of transition metal ions such as Cu2+, Ni2+, Cr and Cd2+at concentrations l.()xl() 3 M and 1.0><10 4 M. Effect of internal solution concentration was also studied. The proposed sensor can be used in the pH range of 2.50 - 9.0. It was used as an indicator electrode in the potentiometric titration of Pb+2 ion against EDTA. [Pg.94]

Ideal potentiometric measurements, especially in analytical chemistry, would require that the potential of the reference electrode be fixed and known, and that the composition of the studied solution affect only the potential of the indicator electrode. This would occur only if the liquid-junction potential could be completely neglected. In practice this situation can be attained only if the whole system contains an indifferent electrolyte in a much larger concentration than that of the other electrolytes, so that the concentration of a particular component in the analysed solution, which is not present in the reference electrode solution, has only a negligible effect on the liquid-junction potential Such a situation rarely occurs, so that it is necessary to know or at least fix the liquid junction potential... [Pg.30]

Figure 4.17 — (A) Exploded view of a tubular flow-cell integrated microconduit system. I Ag/AgCl inner reference electrode M sensitive membrane S internal reference solution. (B) Detail of the integrated microconduit shown within the dotted lines in C. (C) Integrated-microconduit FI manifold for potentiometric measurements C carrier stream R reference electrode solution P pump V injection valve I indicator electrode R reference electrode I pulse inhibitor G ground W waste. (Reproduced from [140] with permission of Pergamon Press). Figure 4.17 — (A) Exploded view of a tubular flow-cell integrated microconduit system. I Ag/AgCl inner reference electrode M sensitive membrane S internal reference solution. (B) Detail of the integrated microconduit shown within the dotted lines in C. (C) Integrated-microconduit FI manifold for potentiometric measurements C carrier stream R reference electrode solution P pump V injection valve I indicator electrode R reference electrode I pulse inhibitor G ground W waste. (Reproduced from [140] with permission of Pergamon Press).

See other pages where Indicator electrodes potentiometric is mentioned: [Pg.4860]    [Pg.4860]    [Pg.333]    [Pg.258]    [Pg.535]    [Pg.539]    [Pg.554]    [Pg.573]    [Pg.575]    [Pg.579]    [Pg.579]    [Pg.584]    [Pg.586]    [Pg.336]    [Pg.668]    [Pg.21]    [Pg.310]    [Pg.262]    [Pg.19]    [Pg.627]    [Pg.409]   


SEARCH



Electrodes indicating

Indicator electrodes

Potentiometric

© 2024 chempedia.info