Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impurity: also neutral

In concrete, triethanolamine accelerates set time and increases early set strength (41—43). These ate often formulated as admixtures (44), for later addition to the concrete mixtures. Compared to calcium chloride, another common set accelerator, triethanolamine is less corrosive to steel-reinforcing materials, and gives a concrete that is more resistant to creep under stress (45). Triethanolamine can also neutralize any acid in the concrete and forms a salt with chlorides. Improvement of mechanical properties, whiteness, and more even distribution of iron impurities in the mixture of portland cements, can be effected by addition of 2% triethanolamine (46). Triethanolamine bottoms and alkanolamine soaps can also be used in these type appUcations. Waterproofing or sealing concrete can be accompUshed by using formulations containing triethanolamine (47,48). [Pg.10]

The polyaddition reaction is influenced by the stmcture and functionaHty of the monomers, including the location of substituents in proximity to the reactive isocyanate group (steric hindrance) and the nature of the hydroxyl group (primary or secondary). Impurities also influence the reactivity of the system for example, acid impurities in PMDI require partial neutralization or larger amounts of the basic catalysts. The acidity in PMDI can be reduced by heat or epoxy treatment, which is best conducted in the plant. Addition of small amounts of carboxyHc acid chlorides lowers the reactivity of PMDI or stabilizes isocyanate terrninated prepolymers. [Pg.342]

At the same time, it was demonstrated that hydrogen neutralization of dopant impurities also occurs in compound semiconductors. This was first achieved with n-type dopants in GaAs (Chevallier etal., 1985) and then with p-type dopants in GaAs (Johnson et al., 1986b). [Pg.18]

Impurities also interact with electrically neutral acidic or basic substances. Basic impurities tend to interact with acidic substances, acidic impurities with basic substances. The former interaction is more extensive in less basic solvents, while the latter interaction is more pronounced in less acidic solvents. [Pg.288]

The fermentation-derived food-grade product is sold in 50, 80, and 88% concentrations the other grades are available in 50 and 88% concentrations. The food-grade product meets the Vood Chemicals Codex III and the pharmaceutical grade meets the FCC and the United States Pharmacopoeia XK specifications (7). Other lactic acid derivatives such as salts and esters are also available in weU-estabhshed product specifications. Standard analytical methods such as titration and Hquid chromatography can be used to determine lactic acid, and other gravimetric and specific tests are used to detect impurities for the product specifications. A standard titration method neutralizes the acid with sodium hydroxide and then back-titrates the acid. An older standard quantitative method for determination of lactic acid was based on oxidation by potassium permanganate to acetaldehyde, which is absorbed in sodium bisulfite and titrated iodometricaHy. [Pg.515]

The neutralized cleavage product, consisting of acetone, phenol, water, hydrocarbons, and trace organic impurities, is separated in a series of distillation columns. Also in this section alpha-methylstyrene is either recovered as a product or hydrogenated to cumene. [Pg.289]

Chemical precipitation and solvent extraction are the main methods of purifying wet-process acid, although other techniques such as crystallisa tion (8) and ion exchange (qv) have also been used. In the production of sodium phosphates, almost all wet-process acid impurities can be induced to precipitate as the acid is neutralized with sodium carbonate or sodium hydroxide. The main exception, sulfate, can be precipitated as calcium or barium sulfate. Most fluorine and siUca can be removed with the sulfate filter cake as sodium fluorosiUcate, Na2SiFg, by the addition of sodium ion and control of the Si/F ratio in the process. [Pg.328]

Anhydrous zinc chloride can be made from the reaction of the metal with chlorine or hydrogen chloride. It is usually made commercially by the reaction of aqueous hydrochloric acid with scrap zinc materials or roasted ore, ie, cmde zinc oxide. The solution is purified in various ways depending upon the impurities present. For example, iron and manganese precipitate after partial neutralization with zinc oxide or other alkah and oxidation with chlorine or sodium hypochlorite. Heavy metals are removed with zinc powder. The solution is concentrated by boiling, and hydrochloric acid is added to prevent the formation of basic chlorides. Zinc chloride is usually sold as a 47.4 wt % (sp gr 1.53) solution, but is also produced in soHd form by further evaporation until, upon cooling, an almost anhydrous salt crystallizes. The soHd is sometimes sold in fused form. [Pg.423]

Isolation. Isolation procedures rely primarily on solubiHty, adsorption, and ionic characteristics of the P-lactam antibiotic to separate it from the large number of other components present in the fermentation mixture. The penicillins ate monobasic catboxyHc acids which lend themselves to solvent extraction techniques (154). Pencillin V, because of its improved acid stabiHty over other penicillins, can be precipitated dkecdy from broth filtrates by addition of dilute sulfuric acid (154,156). The separation process for cephalosporin C is more complex because the amphoteric nature of cephalosporin C precludes dkect extraction into organic solvents. This antibiotic is isolated through the use of a combination of ion-exchange and precipitation procedures (157). The use of neutral, macroporous resins such as XAD-2 or XAD-4, allows for a more rapid elimination of impurities in the initial steps of the isolation (158). The isolation procedure for cephamycin C also involves a series of ion exchange treatments (103). [Pg.31]

Because phenols are weak acids, they can be freed from neutral impurities by dissolution in aqueous N sodium hydroxide and extraction with a solvent such as diethyl ether, or by steam distillation to remove the non-acidic material. The phenol is recovered by acidification of the aqueous phase with 2N sulfuric acid, and either extracted with ether or steam distilled. In the second case the phenol is extracted from the steam distillate after saturating it with sodium chloride (salting out). A solvent is necessary when large quantities of liquid phenols are purified. The phenol is fractionated by distillation under reduced pressure, preferably in an atmosphere of nitrogen to minimise oxidation. Solid phenols can be crystallised from toluene, petroleum ether or a mixture of these solvents, and can be sublimed under vacuum. Purification can also be effected by fractional crystallisation or zone refining. For further purification of phenols via their acetyl or benzoyl derivatives (vide supra). [Pg.68]

Perfluoro(methylcyclohexane) [355-02-2] M 350.1, b 76.3", d 1.7878. Refluxed for 24h with saturated acid KMn04 (to oxidise and remove hydrocarbons), then neutralised, steam distd, dried with P2O5 and passed slowly through a column of dry silica gel. [Glew and Reeves J Phys Chem 60 615 1956.] Also purified by percolation through a Im neutral activated alumina column, and H-impurities checked by NMR. [Pg.323]

The term manufacture also includes coincidental production of a toxic chemical (e.g., as a byproduct or impurity) as a result of the manufacture, processing, use, or treatment of other chemical substances. In the case of coincidental production of an impurity (i.e., a chemical that remains in the product that is distributed in commerce), the de minimis limitation, discussed on page 11, applies. The de minimis limitation does not apply to byproducts (e.g., a chemical that is separated from a process stream and further processed or disposed). Certain listed toxic chemicals may be manufactured as a result of wastewater treatment or other treatment processes. For example, neutralization of acid wastewater can result in the coincidental manufacture of ammonium nitrate (solution). [Pg.25]

Impurities in CL have also been destroyed by oxidation with ozone22 followed by distillation. Ozonation treatment of waste CL leaves no ionic impurities. However, the most commonly used oxidizing agents are potassium permanganate, perboric acid, perborate, and potassium bromate. Treatment of CL with these oxidizing agents is carried out in a neutral medium at 40-60°C. Strongly alkaline or acidic conditions accelerate the oxidation of CL to form isocyanates. Hie undesirable oxidation reaction is fast above pH 7 because of the reaction with isocyanate to form carbamic acid salts, which shifts the equilibrium to form additional isocyanate. [Pg.541]

Impurities consist of unreacted material, including alkanes and internal or branched alkenes, and other material which can be detected in the neutral oil fraction of AOS. Examination of this fraction also indicates the amount of unhydrolyzed material (sulfonate esters and sultones) and byproducts (secondary alcohols, unsaturated and 2-chloro-y-sultones) in the sample. Salt calculations are made to determine inorganic sulfates and sodium chloride. Determinations for alkalinity, color, and water are required to meet product... [Pg.430]

Liquid-liquid extraction (also called solvent extraction) is the transfer of a substance (a consolute) dissolved in one liquid to a second liquid (the solvent) that is immiscible with the first liquid or miscible to a very limited degree. This operation is commonly used in fine chemicals manufacture (I) to wash out impurities from a contaminated solution to a solvent in order to obtain a pure solution (raffinate) from which the pure substance will be isolated, and (2) to pull out a desired substance from a contaminated liquid into the solvent leaving impurities in the first liquid. The former operation is typically employed when an organic phase is to be depleted from impurities which are soluble in acidic, alkaline, or neutral aqueous solutions Water or a diluted aqueous solution is then used as the solvent. The pure raffinate is then appropriately processed (e.g. by distillation) to isolate the desired consolute. In the latter version of extraction impurities remain in the first phase. The extract that has become rich in the desired consolute is then appropriately processed to isolate the consolute. Extraction can also be used to fractionate multiple consolutes. [Pg.252]


See other pages where Impurity: also neutral is mentioned: [Pg.133]    [Pg.6685]    [Pg.229]    [Pg.418]    [Pg.384]    [Pg.182]    [Pg.443]    [Pg.502]    [Pg.222]    [Pg.93]    [Pg.459]    [Pg.238]    [Pg.401]    [Pg.412]    [Pg.470]    [Pg.398]    [Pg.69]    [Pg.85]    [Pg.178]    [Pg.234]    [Pg.536]    [Pg.529]    [Pg.423]    [Pg.761]    [Pg.17]    [Pg.442]    [Pg.331]    [Pg.251]    [Pg.140]    [Pg.6]    [Pg.156]    [Pg.248]    [Pg.74]   
See also in sourсe #XX -- [ Pg.357 ]




SEARCH



Impurity: also

© 2024 chempedia.info