Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impurities dissolution

A drawback of Gran plots is the fact that all deviations from the theoretical slope value cause an error and that side reactions are not considered. The method was modified by Ingman and Still [63], who considered side reactions to a certain degree, but the equilibrium constants and the concentrations of the components involved must be known. The Gran method is, however, advantageous for determinations in the vicinity of the determination limit The extrapolation of the linear dependence yields the sum + c, where c, is the residual concentration of the test component produced by impurities, dissolution of the ISE membrane, etc. [Pg.114]

The basic mechanisms of the impurity dissolution in a stoichiometric semiconductor compound are the following i) lA enter interstices and ii) lA fill the basic structural sites in one sublattice at the simultaneous formation of vacancies in the other one. To establish the mechanisms of lA dissolution in a crystal with NS vacancies, we performed a complex of studies (Dzyubenko et al., 1981,1983 Rogacheva Dzyubenko, 1986 Rogacheva et al., 1985,1988) of the dependences of properties on the lA concentration at a fixed content of intrinsic defects. Sno.9S4Te was chosen as the initial composition, and thus the crystal lattice contained 1.6 at.% of vacant cation sites. The analysis of the concentration dependences of properties (Fig. 13) shows that there are two types (1 and II) of impurities. For impnirities 1... [Pg.131]

It was shown that the presence of NS vacancies in the host compound leads to the appearance of a new mechanism of impurity dissolution consisting in the occupation of vacancies by impurity atoms. The solubility limits for different elements in SnTe at fixed concentrations of NS cation vacancies were determined. At vacancy concentrations less than 1 at.%, there is correlation between solubility limit and relative difference in ionic radii of Sn atoms and those of the impurity. The solubility limit increases with increasing concentration of NS vacancies in the host material. [Pg.137]

The impurities in ordinary iron assist dissolution in acid, and are responsible for the characteristic smell of the hydrogen from this source.) In dilute nitric acid, ammonium nitrate is formed ... [Pg.392]

Suitable inlets commonly used for liquids or solutions can be separated into three major classes, two of which are discussed in Parts A and C (Chapters 15 and 17). The most common method of introducing the solutions uses the nebulizer/desolvation inlet discussed here. For greater detail on types and operation of nebulizers, refer to Chapter 19. Note that, for all samples that have been previously dissolved in a liquid (dissolution of sample in acid, alkali, or solvent), it is important that high-purity liquids be used if cross-contamination of sample is to be avoided. Once the liquid has been vaporized prior to introduction of residual sample into the plasma flame, any nonvolatile impurities in the liquid will have been mixed with the sample itself, and these impurities will appear in the results of analysis. The problem can be partially circumvented by use of blanks, viz., the separate examination of levels of residues left by solvents in the absence of any sample. [Pg.104]

Tellurium and many other impurities remain undissolved. The solution is filtered and cooled to reverse the reaction and to deposit soHd selenium. Oeselenized liquor is recycled to the dissolution step. [Pg.331]

Hydrated amorphous silica dissolves more rapidly than does the anhydrous amorphous silica. The solubility in neutral dilute aqueous salt solutions is only slighdy less than in pure water. The presence of dissolved salts increases the rate of dissolution in neutral solution. Trace amounts of impurities, especially aluminum or iron (24,25), cause a decrease in solubility. Acid cleaning of impure silica to remove metal ions increases its solubility. The dissolution of amorphous silica is significantly accelerated by hydroxyl ion at high pH values and by hydrofluoric acid at low pH values (1). Dissolution follows first-order kinetic behavior and is dependent on the equilibria shown in equations 2 and 3. Below a pH value of 9, the solubility of amorphous silica is independent of pH. Above pH 9, the solubility of amorphous silica increases because of increased ionization of monosilicic acid. [Pg.488]

MetaUic impurities in beryUium metal were formerly determined by d-c arc emission spectrography, foUowing dissolution of the sample in sulfuric acid and calcination to the oxide (16) and this technique is stUl used to determine less common trace elements in nuclear-grade beryUium. However, the common metallic impurities are more conveniently and accurately determined by d-c plasma emission spectrometry, foUowing dissolution of the sample in a hydrochloric—nitric—hydrofluoric acid mixture. Thermal neutron activation analysis has been used to complement d-c plasma and d-c arc emission spectrometry in the analysis of nuclear-grade beryUium. [Pg.69]

Other options for the purification of CA include dissolution in hot water, aqueous ammonia, aqueous formaldehyde, or hot dimethylformamide followed by filtration to remove most of the impurities. The CA is recoverable by cooling the aqueous solution (84), acidifying the ammonium hydroxide solution (85), or cooling the dimethylform amide solution with further precipitation of CA by addition of carbon tetrachloride (86). Sodium hydroxide addition precipitates monosodium cyanurate from the formaldehyde solution (87). [Pg.420]

Soluble anode materials are not always a pure metal. In acid, low chloride nickel solutions, pure nickel does not corrode well, and small amounts of specific impurities are added to make the nickel more active, allowing more efficient dissolution. For example, since the early 1960s, nickel anode material containing a small amount of nickel sulfide [16812-54-7] NiS, has been commercially available and important in nickel sulfamate [13770-85-3] Ni(H2N02S)2, plating baths. These anodes corrode at a lower potential then pure nickel or other nickel anode materials (see Nickel and nickel alloys). [Pg.147]

Beyond the simple resistance of a material of construction to dissolution in a given chemical, many other properties enter into consideration when makiug an appropriate or optimum MOC selection for a given environmental exposure. These factors include the influence of velocity, impurities or contaminants, pH, stress, crevices, bimetallic couples, levels of nuclear, UV, or IB radiation, microorganisms, temperature heat flux, stray currents, properties associatea with original production of the material and its subsequent fabrication as an item of equipment, as well as other physical ana mechanical properties of the MOC, the Proverbial Siebert Changes in the Phase of the Moon, and so forth. [Pg.2442]

At present time the use of oxide single erystals sueh as bismuth germanate (Bi Ge O, ) and pai atellurite (TeO,) as deteetors in opto-eleetronies stimulate produetion of high purity Bi, Te, Ge and their oxides Bi O, GeO, TeO,. This requires development of analytieal teehniques for purity eontrol of these materials. For survey traee analysis atomie emission speetrometry (AES) and mass speetrometry (MS) with induetively eoupled plasma (ICP) is widely used. However, the deteetion limits of impurities aehievable by these methods for the analysis of high purity solids are limited by neeessity of sample dissolution in pure aeids and dilution up to 5 10 times for ICP-MS and 50-100 for ICP-AES. One of the most effeetive ways to improve the analytieal performanees of these methods is pre-eoneentration of miero-elements. [Pg.69]

Investigated is the influence of the purity degree and concentration of sulfuric acid used for samples dissolution, on the analysis precision. Chosen are optimum conditions of sample preparation for the analysis excluding loss of Ce(IV) due to its interaction with organic impurities-reducers present in sulfuric acid. The photometric technique for Ce(IV) 0.002 - 0.1 % determination in alkaline and rare-earth borates is worked out. The technique based on o-tolidine oxidation by Ce(IV). The relative standard deviation is 0.02-0.1. [Pg.198]

Because phenols are weak acids, they can be freed from neutral impurities by dissolution in aqueous N sodium hydroxide and extraction with a solvent such as diethyl ether, or by steam distillation to remove the non-acidic material. The phenol is recovered by acidification of the aqueous phase with 2N sulfuric acid, and either extracted with ether or steam distilled. In the second case the phenol is extracted from the steam distillate after saturating it with sodium chloride (salting out). A solvent is necessary when large quantities of liquid phenols are purified. The phenol is fractionated by distillation under reduced pressure, preferably in an atmosphere of nitrogen to minimise oxidation. Solid phenols can be crystallised from toluene, petroleum ether or a mixture of these solvents, and can be sublimed under vacuum. Purification can also be effected by fractional crystallisation or zone refining. For further purification of phenols via their acetyl or benzoyl derivatives (vide supra). [Pg.68]

Production of A1 metal involves two stages (a) the extraction, purification and dehydration of bauxite, and (b) the electrolysis of AI2O3 dissolved in molten cryolite Na3AlF6. Bauxite is now almost universally treated by the Bayer process this involves dissolution in aqueous NaOH, separation from insoluble impurities (red muds), partial precipitation of the trihydrate... [Pg.219]

There are in addition several other factors that accelerate corrosion and must betaken into account these include crevices, galvanic coupling, tensile stress, aeration, presence of impurities, surface finish, etc. If these were also taken into consideration then several million experiments would have to be performed to compile such data. There are many instances where two or more chemicals exert a marked synergistic action such that low dissolution rates obtained in either environment become much greater in the presence of both. Further, the corrosiveness of a chemical will be affected by the presence of certain impurities, which may act as either accelerators or inhibitors. To take all these factors into account would add to an already impossible task and as Evans has remarked, There are not enough trained investigators in the world to obtain the empirical information to cover all combinations of conditions likely to arise . Unfortunately corrosion science has not yet reached the stage where prediction, based on a few well established laws, allows selection of materials to be made without recourse to a vast amount of data. [Pg.403]

The effect of pH on the corrosion of zinc has already been mentioned (p. 4.170). In the range of pH values from 5 -5 to 12, zinc is quite stable, and since most natural waters come within this range little difficulty is encountered in respect of pH. The pH does, however, affect the scale-forming properties of hard water (see Section 2.3 for a discussion of the Langelier index). If the pH is below the value at which the water is in equilibrium with calcium carbonate, the calcium carbonate will tend to dissolve rather than form a scale. The same effect is produced in the presence of considerable amounts of carbon dioxide, which also favours the dissolution of calcium carbonate. In addition, it is important to note that small amounts of metallic impurities (particularly copper) in the water can cause quite severe corrosion, and as little as 0-05 p.p.m. of copper in a domestic water system can be a source of considerable trouble with galvanised tanks and pipes. [Pg.819]

Salt solutions When a zinc sheet is immersed in a solution of a salt, such as potassium chloride or potassium sulphate, corrosion usually starts at a number of points on the surface of the metal, probably where there are defects or impurities present. From these it spreads downwards in streams, if the plate is vertical. Corrosion will start at a scratch or abrasion made on the surface but it is observed that it does not necessarily occur at all such places. In the case of potassium chloride (or sodium chloride) the corrosion spreads downwards and outwards to cover a parabolic area. Evans explains this in terms of the dissolution of the protective layer of zinc oxide by zinc chloride to form a basic zinc chloride which remains in solution. [Pg.821]


See other pages where Impurities dissolution is mentioned: [Pg.659]    [Pg.210]    [Pg.342]    [Pg.383]    [Pg.659]    [Pg.210]    [Pg.342]    [Pg.383]    [Pg.486]    [Pg.241]    [Pg.241]    [Pg.337]    [Pg.378]    [Pg.500]    [Pg.169]    [Pg.170]    [Pg.170]    [Pg.174]    [Pg.337]    [Pg.176]    [Pg.281]    [Pg.563]    [Pg.5]    [Pg.183]    [Pg.479]    [Pg.401]    [Pg.164]    [Pg.273]    [Pg.511]    [Pg.119]    [Pg.132]    [Pg.143]    [Pg.408]    [Pg.424]    [Pg.428]    [Pg.638]    [Pg.1219]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



© 2024 chempedia.info