Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal analysis hyphenated techniques

In direct insertion techniques, reproducibility is the main obstacle in developing a reliable analytical technique. One of the many variables to take into account is sample shape. A compact sample with minimal surface area is ideal [64]. Direct mass-spectrometric characterisation in the direct insertion probe is not very quantitative, and, even under optimised conditions, mass discrimination in the analysis of polydisperse polymers and specific oligomer discrimination may occur. For nonvolatile additives that do not evaporate up to 350 °C, direct quantitative analysis by thermal desorption is not possible (e.g. Hostanox 03, MW 794). Good quantitation is also prevented by contamination of the ion source by pyrolysis products of the polymeric matrix. For polymer-based calibration standards, the homogeneity of the samples is of great importance. Hyphenated techniques such as LC-ESI-ToFMS and LC-MALDI-ToFMS have been developed for polymer analyses in which the reliable quantitative features of LC are combined with the identification power and structure analysis of MS. [Pg.409]

Thermal analysis is a group of techniques in which a physical property of a substance is measured as a function of temperature when the sample is subjected to a controlled temperature program. Single techniques, such as thermogravimetry (TG), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), dielectric thermal analysis, etc., provide important information on the thermal behaviour of materials. However, for polymer characterisation, for instance in case of degradation, further analysis is required, particularly because all of the techniques listed above mainly describe materials only from a physical point of view. A hyphenated thermal analyser is a powerful tool to yield the much-needed additional chemical information. In this paper we will concentrate on simultaneous thermogravimetric techniques. [Pg.1]

The thermal characterisation of elastomers has recently been reviewed by Sircar [28] from which it appears that DSC followed by TG/DTG are the most popular thermal analysis techniques for elastomer applications. The TG/differential thermal gravimetry (DTG) method remains the method of choice for compositional analysis of uncured and cured elastomer compounds. Sircar s comprehensive review [28] was based on single thermal methods (TG, DSC, differential thermal analysis (DTA), thermomechanical analysis (TMA), DMA) and excluded combined (TG-DSC, TG-DTA) and simultaneous (TG-fourier transform infrared (TG-FTIR), TG-mass spectroscopy (TG-MS)) techniques. In this chapter the emphasis is on those multiple and hyphenated thermogravimetric analysis techniques which have had an impact on the characterisation of elastomers. The review is based mainly on Chemical Abstracts records corresponding to the keywords elastomers, thermogravimetry, differential scanning calorimetry, differential thermal analysis, infrared and mass spectrometry over the period 1979-1999. Table 1.1 contains the references to the various combined techniques. [Pg.2]

Spectroscopy has become a powerful tool for the determination of polymer structures. The major part of the book is devoted to techniques that are the most frequently used for analysis of rubbery materials, i.e., various methods of nuclear magnetic resonance (NMR) and optical spectroscopy. One chapter is devoted to (multi) hyphenated thermograviometric analysis (TGA) techniques, i.e., TGA combined with Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy, gas chromatography, differential scanning calorimetry and differential thermal analysis. There are already many excellent textbooks on the basic principles of these methods. Therefore, the main objective of the present book is to discuss a wide range of applications of the spectroscopic techniques for the analysis of rubbery materials. The contents of this book are of interest to chemists, physicists, material scientists and technologists who seek a better understanding of rubbery materials. [Pg.654]

The so-called hyphenated techniques , incorporating thermal methods as one of the combined analytical techniques are sure to play an increasing role in the identification and characterization of crystalline forms of pharmaceutical substances. The combination of TGA with FTIR allows the simultaneous quantitative analysis of weight changes during thermal processes with the IR identification of the decomposition products (e.g. solvent) resulting from those processes (Materazzi 1997). For substances with low volatility, the FTIR analysis may be replaced with mass spectroscopy (Materazzi 1998). [Pg.251]

Thermal analysis involves observation of the usually very delicate response of a sample to controlled heat stimuli. The elements of thermal-analysis techniques have been known since 1887 when Le Chatelier used an elementary form of differential thermal analysis to study clays (4), but wide application did not come until the introduction of convenient instrumentation by du Pont, Perkin-Elmer, Mettler and other sources in the 1960 s. Currently, instrumentation and procedures are commercially available for DTA, DSC, TGA, TMA, and a number of so-called hyphenated methods. Several methods are currently under study by ASTM committees for consideration as to their suitability for adoption as ASTM standards. [Pg.389]

SFE-HPLC. The SFE-FIPLC combination is a logical extension of the above-described hyphenated techniques aimed at addressing the analysis of extracts inaccessible to GC and SFC owing to the high polarity, molecular weight, or thermal lability of the analytes. Interfacing a SCF extractor to a liquid chromatograph is the most complex operation involved in SFE hy-... [Pg.545]

Apart from combined TA techniques (on-line or not) the actual trends in thermal analysis are the introduction of modulated and high-resolution techniques, hyphenated thermal analysis methods e.g. TG-FTIR, TG-MS, DSC-XRD, etc.), alternative heating modes, microthermal analysis methods, industrial standardisation and quality control. Modulation means a periodic perturbation of a temperature program. Temperature modulation finds application in DSC, TG, DETA, TMA and uTA. Temperature-modulated techniques, such as Modulated DSC (MDSC ) and Modulated TGA (MTGATM), broaden the insight into the material properties. The use of modulated temperature programs in thermal methods has been reviewed [37,37a]. [Pg.160]

As an alternative to wet ehemical routes of analysis, this monograph deals mainly with the direct deformulation of solid polymer/additive compounds. In Chapter 1 in-polymer spectroscopic analysis of additives by means of UV/VIS, FTIR, near-IR, Raman, fluorescence spectroseopy, high-resolution solid-state NMR, ESR, Mossbauer and dielectrie resonance spectroscopy is considered with a wide coverage of experimental data. Chapter 2 deals mainly with thermal extraction (as opposed to solvent extraction) of additives and volatiles from polymerie material by means of (hyphenated) thermal analysis, pyrolysis and thermal desorption techniques. Use and applieations of various laser-based techniques (ablation, spectroscopy, desorption/ionisation and pyrolysis) to polymer/additive analysis are described in Chapter 3 and are critically evaluated. Chapter 4 gives particular emphasis to the determination of additives on polymeric surfaces. The classical methods of... [Pg.819]

D.J. Johnston, P.J. Stout, S.L. HUl, and K. Krishnan, Differential scanning calorimetry—fourier transform IR spectroscopy and thermogravimetric analysis—fourier transform IR spectroscopy to differentiate between very similar polymer materials, in T. Provder, M.W. Urban and H.G. Barth, eds.. Hyphenated Techniques in Polymer Characterization Thermal and Spectroscopic Methods, American Chemical Society Symposium Series, pp. 149-161,1994. [Pg.210]

The combination of chromatography and mass spectrometry (MS) is a subject that has attracted much interest over the last forty years or so. The combination of gas chromatography (GC) with mass spectrometry (GC-MS) was first reported in 1958 and made available commercially in 1967. Since then, it has become increasingly utilized and is probably the most widely used hyphenated or tandem technique, as such combinations are often known. The acceptance of GC-MS as a routine technique has in no small part been due to the fact that interfaces have been available for both packed and capillary columns which allow the vast majority of compounds amenable to separation by gas chromatography to be transferred efficiently to the mass spectrometer. Compounds amenable to analysis by GC need to be both volatile, at the temperatures used to achieve separation, and thermally stable, i.e. the same requirements needed to produce mass spectra from an analyte using either electron (El) or chemical ionization (Cl) (see Chapter 3). In simple terms, therefore, virtually all compounds that pass through a GC column can be ionized and the full analytical capabilities of the mass spectrometer utilized. [Pg.19]

HPLC has been applied to lipid analysis mainly in consideration of the necessity to avoid high temperatures, so at the very beginning, its applications dealt with thermally unstable molecules (e.g., tocopherols, phenolics, oxidation products) and often it was used as an ancillary technique, as a preparative step prior to MS analysis. The limits were in the high volume of the HPLC band that strongly limited the possibility to transfer it to a GC or to a MS. Only in the last 20 years or somewhat less, this kind of hyphenation has become commercially available. [Pg.563]


See other pages where Thermal analysis hyphenated techniques is mentioned: [Pg.737]    [Pg.20]    [Pg.830]    [Pg.11]    [Pg.6094]    [Pg.3726]    [Pg.318]    [Pg.14]    [Pg.155]    [Pg.6093]    [Pg.1091]    [Pg.71]    [Pg.439]    [Pg.1216]    [Pg.252]    [Pg.252]    [Pg.155]    [Pg.159]    [Pg.192]    [Pg.192]    [Pg.199]    [Pg.214]    [Pg.39]    [Pg.224]    [Pg.3]    [Pg.7]    [Pg.9]    [Pg.130]    [Pg.11]    [Pg.102]    [Pg.193]    [Pg.496]    [Pg.675]    [Pg.737]    [Pg.662]    [Pg.13]   


SEARCH



Analysis techniques

Hyphenated

Hyphenated techniques

Hyphenated thermal

Hyphenated thermal analysis

Hyphenation

Hyphens

Thermal analysis techniques

Thermal techniques

© 2024 chempedia.info