Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxides synthesis

Papet S, Sarrade S, Julbe A, and Guizard C. Titanium hydroxide synthesis in supercritical solvent. Sixth Meeting on Supercritical Fluids, Nottingham, England, 1999. [Pg.192]

Vitali F, Longstaffe FJ, Bird MI, Gage KL, Caldwell WGE (2001) Hydrogen-isotope fractionation in aluminum hydroxides Synthesis products verstts natirral samples from bauxites. Geochim Cosmochim Acta 65 1391-1398... [Pg.60]

See also Lithium hydroxide and lithium oxide, synthesis 1 Vanadium(II) hydroxide, synthesis 30 Uranyl chloride 1-hydrate, synthesis 41 Chlorine (CP )-labeled thionyl chloride, silicon tetrachloride, boron chloride, germanium(IV) chloride, and phos-phorus(III) chloride, synthesis 44 Inner complexes of cobalt(III) with diethylenetriamine, synthesis 56... [Pg.116]

Potassium hydroxide Synthesis of carboxylic acids from hydroxycarboxylic acids... [Pg.180]

Silver nitrate/potassium hydroxide Synthesis of hydrocarbons from horanes s. 16, 753... [Pg.640]

For the liquors of multicomponent composition and of any mineralization, the most promising sorbents of lithium are the compounds based on aluminium hydroxide. The synthesis of aluminium compounds are rather simple and may be realized both in the reaction zone and out of it. The sorption capacity of aluminium hydroxides ( 8 - 10 mg equiv./g of AI2O3) is not worse than that of the cationites based on manganese and titanium. The degree of lithium recovery from liquors with aluminium hydroxide is also influenced by the method of aluminium hydroxide synthesis, molar ratio AI2O3 Li20 in the reaction mixture, temperature and pH of the process, interaction time, macrocomponent composition of the liquor (concentrations of NaCl, MgCl2, CaCb and other electrolytes). [Pg.624]

Now the easy part -isolating your product. One of the most attractive features of this new synthesis is that the standard Ai/(Hg) amination mixture must be tediously filtered to separate the product from the spent aluminum hydroxide sludge at this point. The following remedies this most frustrating step and will probably give many a new outlook on the potential of the AI(Hg) reduction. [Pg.107]

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

The last group of reactions uses ring opening of carbonyl or 1-hydroxyalkyl substituted cyclopropanes, which operate as a -synthons. d -Synthons, e.g. hydroxide or halides, yield 1,4-disubstituted products (E. Wenkert, 1970 A). (1-Hydroxyalkyl)- and (1-haloalkyl)-cyclopropanes are rearranged to homoallylic halides, e.g. in Julia s method of terpene synthesis (M. Julia, 1961, 1974 S.F. Brady, I968 J.P. McCormick, 1975). [Pg.69]

The most stable protected alcohol derivatives are the methyl ethers. These are often employed in carbohydrate chemistry and can be made with dimethyl sulfate in the presence of aqueous sodium or barium hydroxides in DMF or DMSO. Simple ethers may be cleaved by treatment with BCI3 or BBr, but generally methyl ethers are too stable to be used for routine protection of alcohols. They are more useful as volatile derivatives in gas-chromatographic and mass-spectrometric analyses. So the most labile (trimethylsilyl ether) and the most stable (methyl ether) alcohol derivatives are useful in analysis, but in synthesis they can be used only in exceptional cases. In synthesis, easily accessible intermediates of medium stability are most helpful. [Pg.161]

Synthesis of (A) started with the combination of 2,4,6-trimethylphenol and allyl bromide to give the or/Ao-allyl dienone. Acid-catalyzed rearrangement and oxidative bydroboration yielded the dienone with a propanol group in porlactone ring were irons in the product as expected (see p. 275). Treatment with aqueous potassium hydroxide gave the epoxy acid, which formed a crystalline salt with (R)-l-(or-naphthyl)ethylamine. This was recrystallized to constant rotation. [Pg.319]

In the total synthesis of the naturally occurring big molecule of palytoxin, which has numerous labile functional groups, this coupling is the most useful for the creation of E, Z-conjugated diene part 653. In this case, thallium hydroxide as a base accelerates the reaction 1000 times more than KOH[523]. Even TECOj can be used instead of a strong base in other cases[524]. [Pg.222]

Besides being useful precursors to pyrroles pyridine-2-ones -4-ones, -4-thiones. and -4-imines 4-alkylidene-dihydropyridines thiophenes 1,2,4-triazoles thiapyrane-2-thiones, isoquinoline-3-ones isoben-zothiophenes and 4-mercaptoimidazolium hydroxide inner salts, mesoionic thiazoles are potentially useful in the construction of molecules with herbicidic (39). central nerve stimulating, and antiinflammatory properties (40,41). Application in dye synthesis has likewise been reported (42). [Pg.15]

The most widely used method for the preparation of carboxylic acids is ester hydrolysis. The esters are generally prepared by heterocyclization (cf. Chapter II), the most useful and versatile of which is the Hantzsch s synthesis, that is the condensation of an halogenated a- or /3 keto ester with a thioamide (1-20). For example ethyl 4-thiazole carboxylate (3) was prepared by Jones et al. from ethyl a-bromoacetoacetate (1) and thioformamide (2) (1). Hydrolysis of the ester with potassium hydroxide gave the corresponding acid (4) after acidification (Scheme 1). [Pg.520]

Section 8 13 When nucleophilic substitution is used for synthesis the competition between substitution and elimination must be favorable However the normal reaction of a secondary alkyl halide with a base as strong or stronger than hydroxide is elimination (E2) Substitution by the Sn2 mechanism predominates only when the base is weaker than hydroxide or the alkyl halide is primary Elimination predominates when tertiary alkyl halides react with any anion... [Pg.355]

The last step in the synthesis of divinyl ether (used as an anesthetic under the name Vinethene) involves heating CICH2CH2OCH2CH2CI with potassium hydroxide Show how you could prepare the necessary starting material CICH2CH2OCH2CH2CI from ethylene... [Pg.698]

Ma.nufa.cture. In general, manufacture is carried out in batch reactors at close to atmospheric pressure. A moderate excess of finely divided potassium hydroxide is suspended in a solvent such as 1,2-dimethoxyethane. The carbonyl compound is added, followed by acetylene. The reaction is rapid and exothermic. At temperatures below 5°C the product is almost exclusively the alcohol. At 25—30°C the glycol predominates. Such synthesis also... [Pg.113]

Metal organic decomposition (MOD) is a synthesis technique in which metal-containing organic chemicals react with water in a nonaqueous solvent to produce a metal hydroxide or hydrous oxide, or in special cases, an anhydrous metal oxide (7). MOD techniques can also be used to prepare nonoxide powders (8,9). Powders may require calcination to obtain the desired phase. A major advantage of the MOD method is the control over purity and stoichiometry that can be achieved. Two limitations are atmosphere control (if required) and expense of the chemicals. However, the cost of metal organic chemicals is decreasing with greater use of MOD techniques. [Pg.310]

Stabilizer Synthesis. The selected alkyltin chloiide intermediate reacts with either a carboxyhc acid or a mercaptan in the presence of an appropriate base, such as sodium hydroxide, to yield the alkyltin carboxylate or alkyltin mercaptide heat stabihzet. Alternatively, the alkyltin chloride can react with the base to yield the alkyltin oxide, which may or may not be isolated, for subsequent condensation with the selected carboxyhc acid or mercaptan. [Pg.547]

Alkali Fusion of /u-Benzenedisulfonic Acid. Even though this process like the previous one is a very ancient one, it is still the main route for the synthesis of resorcinol. It has been described in detail previously and does not seem to have drastically evolved since 1980. It involves the reaction of benzene with sulfuric acid to form y -benzenedisulfonic acid which is then converted to its disulfonate sodium salt by treatment with sodium sulfite. In a second step, this salt is heated to 350°C in the presence of sodium hydroxide yielding the sodium resorcinate and sodium sulfite. [Pg.487]

Fig. 1. General process operations for hydrothermal synthesis. Feedstocks may be oxides, hydroxides or salts, gels, organic materials, or acids or bases. The atmosphere within the reactor may be oxidising or reducing. To convert MPa to psi, multiply by 145. Fig. 1. General process operations for hydrothermal synthesis. Feedstocks may be oxides, hydroxides or salts, gels, organic materials, or acids or bases. The atmosphere within the reactor may be oxidising or reducing. To convert MPa to psi, multiply by 145.
Another important class of titanates that can be produced by hydrothermal synthesis processes are those in the lead zirconate—lead titanate (PZT) family. These piezoelectric materials are widely used in manufacture of ultrasonic transducers, sensors, and minia ture actuators. The electrical properties of these materials are derived from the formation of a homogeneous soHd solution of the oxide end members. The process consists of preparing a coprecipitated titanium—zirconium hydroxide gel. The gel reacts with lead oxide in water to form crystalline PZT particles having an average size of about 1 ]lni (Eig. 3b). A process has been developed at BatteUe (Columbus, Ohio) to the pilot-scale level (5-kg/h). [Pg.500]

Hexa.cya.no Complexes. Ferrocyanide [13408-63 ] (hexakiscyanoferrate-(4—)), (Fe(CN) ) , is formed by reaction of iron(II) salts with excess aqueous cyanide. The reaction results in the release of 360 kJ/mol (86 kcal/mol) of heat. The thermodynamic stabiUty of the anion accounts for the success of the original method of synthesis, fusing nitrogenous animal residues (blood, horn, hides, etc) with iron and potassium carbonate. Chemical or electrolytic oxidation of the complex ion affords ferricyanide [13408-62-3] (hexakiscyanoferrate(3—)), [Fe(CN)g] , which has a formation constant that is larger by a factor of 10. However, hexakiscyanoferrate(3—) caimot be prepared by direct reaction of iron(III) and cyanide because significant amounts of iron(III) hydroxide also form. Hexacyanoferrate(4—) is quite inert and is nontoxic. In contrast, hexacyanoferrate(3—) is toxic because it is more labile and cyanide dissociates readily. Both complexes Hberate HCN upon addition of acids. [Pg.434]


See other pages where Hydroxides synthesis is mentioned: [Pg.139]    [Pg.133]    [Pg.199]    [Pg.473]    [Pg.173]    [Pg.139]    [Pg.133]    [Pg.199]    [Pg.473]    [Pg.173]    [Pg.94]    [Pg.133]    [Pg.2901]    [Pg.560]    [Pg.139]    [Pg.323]    [Pg.40]    [Pg.180]    [Pg.638]    [Pg.327]    [Pg.550]    [Pg.283]    [Pg.393]    [Pg.497]    [Pg.500]    [Pg.501]    [Pg.437]   
See also in sourсe #XX -- [ Pg.420 ]

See also in sourсe #XX -- [ Pg.5 , Pg.359 ]




SEARCH



Hydroxide complexes rational synthesis

Layered double hydroxides synthesis

Magnesium hydroxides synthesis

Potassium hydroxide synthesis

Synthesis procedures with tetrabutylammonium hydroxide

Tetrabutylammonium hydroxide, synthesis

The Sonochemical Synthesis of Nanosized Hydroxides

© 2024 chempedia.info