Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophobic surface, model

AT-cut, 9 MHz quartz-crystal oscillators were purchased from Kyushu Dentsu, Co., Tokyo, in which Ag electrodes (0.238 cm2) had been deposited on each side of a quartz-plate (0.640 cm2). A homemade oscillator circuit was designed to drive the quartz at its resonant frequency both in air and water phases. The quartz crystal plates were usually treated with 1,1,1,3,3,3-hexamethyldisilazane to obtain a hydrophobic surface unless otherwise stated [28]. Frequencies of the QCM was followed continuously by a universal frequency counter (Iwatsu, Co., Tokyo, SC 7201 model) attached to a microcomputer system (NEC, PC 8801 model). The following equation has been obtained for the AT-cut shear mode QCM [10] ... [Pg.123]

Fig. 4.8 compares data on the adsorption of lauric acid (C12) and caprylic acid (Cs) at a hydrophobic surface (mercury) as a function of the total bulk concentration for different pH-values. As is to be expected the molecular species becomes adsorbed at much lower concentrations than the carboxylate anions. The latter cannot penetrate into the adsorption layer without being accompanied by positively charged counterions (Na+). As was shown in Fig. 4.4, the adsorption data of pH = 4 can be plotted in the form of a Frumkin (FFG) equation. Fig. 4.9 compares the adsorption of fatty acids on a hydrophobic model surface (Hg) with that of the adsorption on Y-AI2O3. [Pg.107]

It is important to propose molecular and theoretical models to describe the forces, energy, structure and dynamics of water near mineral surfaces. Our understanding of experimental results concerning hydration forces, the hydrophobic effect, swelling, reaction kinetics and adsorption mechanisms in aqueous colloidal systems is rapidly advancing as a result of recent Monte Carlo (MC) and molecular dynamics (MO) models for water properties near model surfaces. This paper reviews the basic MC and MD simulation techniques, compares and contrasts the merits and limitations of various models for water-water interactions and surface-water interactions, and proposes an interaction potential model which would be useful in simulating water near hydrophilic surfaces. In addition, results from selected MC and MD simulations of water near hydrophobic surfaces are discussed in relation to experimental results, to theories of the double layer, and to structural forces in interfacial systems. [Pg.20]

The above forms for the Lennard-Jones surface-water interaction potential have been used as models of hydrophobic surfaces such as pyrophyl1ite, graphite, or paraffin. If the intention of the study, however, is to understand interfacial processes at mineral surfaces representative of smectites or mica, explicit electrostatic interactions betweeen water molecules and localized charges at the surface become important. [Pg.25]

Fig. 6. A highly idealized model for the plasma albumin molecule to account for the N-F transformation and its relationship to the titration anomaly, the cooperative detergent binding, and the altered solubility behavior of the low pH form. The model contains four folded amphipathic subunits, the hydrophobic surfaces being buried in the N form and exposed in the F form. Holes around the periphery of the molecule represent the 10 to 12 strong binding sites for detergent ions which are destroyed, upon isomerization, with the exposure of a large number of weaker sites. Reprinted with permission from Foster (1960). Copyright by Academic Press, Inc. Fig. 6. A highly idealized model for the plasma albumin molecule to account for the N-F transformation and its relationship to the titration anomaly, the cooperative detergent binding, and the altered solubility behavior of the low pH form. The model contains four folded amphipathic subunits, the hydrophobic surfaces being buried in the N form and exposed in the F form. Holes around the periphery of the molecule represent the 10 to 12 strong binding sites for detergent ions which are destroyed, upon isomerization, with the exposure of a large number of weaker sites. Reprinted with permission from Foster (1960). Copyright by Academic Press, Inc.
The bicubic patches are characterized with different colors, intensities and line textures to show attributes such as hydrophobicity and steric properties. Only one attribute may be displayed at a time, with color and intensity representing the value of the attribute, and line texture representing karma s confidence level in the information. For example, when displaying hydrophobicity, red patches are hydrophobic space while blue patches are polar space. Patches drawn with solid lines represent areas which are well explored while patches with short dashes contain little information. Displaying information using multiple cues a ows the user to examine various aspects of the surface model without having to deal with large amounts of numerical data. [Pg.157]

Fig. 14.12 VolSurf model to correlate 49 matrix metalloproteinase inhibitors with different zinc-binding functionalities to rabbit oral bioavailability for metabolically stable compounds. (A) Semiquantitative PLS model 0.424, r 0.646, 4 PLS components) to rank novel synthesis candidates. Main factors influencing absorption, that is, lower polarity, capacity factors and increased hydrophobicity, are in agreement with global models for human intestinal absorption. (B) Distribution of polar and hydrophobic surfaces for two molecules with low (0981) and higher (2290) rabbit AUC from oral pharmacokinetic studies. Fig. 14.12 VolSurf model to correlate 49 matrix metalloproteinase inhibitors with different zinc-binding functionalities to rabbit oral bioavailability for metabolically stable compounds. (A) Semiquantitative PLS model 0.424, r 0.646, 4 PLS components) to rank novel synthesis candidates. Main factors influencing absorption, that is, lower polarity, capacity factors and increased hydrophobicity, are in agreement with global models for human intestinal absorption. (B) Distribution of polar and hydrophobic surfaces for two molecules with low (0981) and higher (2290) rabbit AUC from oral pharmacokinetic studies.
Entropy-related adsorption, denoted hydrophobic sorption (or solvophobic interaction) is the partitioning of nonpolar organics out of the polar aqueous phase onto hydrophobic surfaces. Fig. 5.6 shows a schematic model of forces that contribute to the sorption of hydrophobic organics, relevant to the subsurface environment. [Pg.110]

The water-shell-model, strictly speaking, will only apply to very hydrophilic enzymes which do not contain hydrophobic parts. Many enzymes, like lipases, are surface active and interact with the internal interface of a microemulsion. In fact, lipases need a hydrophobic surface in order to give the substrate access to the active site of the enzyme. Nevertheless, Zaks and Klibanov found out that it is often not necessary to have a monolayer of water on the enzyme surface in order to perform a catalytic reaction in an organic solvent [98]. [Pg.199]

Our aim, however, is to find a model that is as simple as possible and yet makes it possible to estimate adsorption from surfactant mixtures within experimental error in the type of systems investigated by us, i.e. adsorption at coverages approaching monolayers on essentially hydrophobic surfaces, the surfactants adsorbing with their... [Pg.227]

This area is a development in the usage of NDDO models that emphasizes their utility for large-scale problems. Structure-activity relationships (SARs) are widely used in the pharmaceutical industry to understand how the various features of biologically active molecules contribute to their activity. SARs typically take the form of equations, often linear equations, that quantify activity as a function of variables associated with the molecules. The molecular variables could include, for instance, molecular weight, dipole moment, hydrophobic surface area, octanol-water partition coefficient, vapor pressure, various descriptors associated with molecular geometry, etc. For example, Cramer, Famini, and Lowrey (1993) found a strong correlation (r = 0.958) between various computed properties for 44 alkylammonium ions and their ability to act as acetylcholinesterase inhibitors according to the equation... [Pg.152]

The failure of the theory indicates that soy protein behavior is more complex than Melander and Horvath s (7, ) model. In deriving their simple theory, Melander and Horvath assumed that the changes in hydrophobic surface area, in the dipole moment, and in the net charge of the protein upon solubilization are invariant with respect to salt species or salt concentration. In other words, they assumed that the soluble proteins have the same thermodynamic state regardless of salt species or salt concentration. The results for soy proteins can be treated in the framework of the Melander and Horvath s theory if it is expanded to allow the exposed surface area, the dipole moment, and the net protein charge to be functions of the salt species and the salt concentration. [Pg.101]

Let us evaluate some experimental data. To this end, we use a dual-mode model (Eq. 9-6). This model is a combination of a linear absorption (to represent the sorbate s mixing into natural organic matter) and a Freundlich equation (as seen for adsorption to hydrophobic surfaces or pores of solids like activated carbons) ... [Pg.304]

The ratio A Cp D)/A Cp(N D) should be a measure of the relative burial of hydrophobic surface areas in the transition and folded states, if the hydrophobic model is correct. The ratio is 0.51 for CI2, compared with a value of /3T of 0.6,27 which is a measure of the overall change in surface area (equation 18.9). [Pg.612]

The stronger excitonic interaction in EB assemblies than that of ACR or AMAC is apparently due to a greater hydrophobic surface area of the former, as estimated from computer modeling studies (MacSpartan). Such increased hydrophobic surface is not expected from their structures (three six-membered ring systems) it also results in an enhanced entropic contribution to the binding energy when the probe is transferred from the aqueous phase to the interior of BAZrP, where there is little or no water. Therefore, the formation of these supramolecular assemblies may indeed involve a large entropic component, but this needs to be demonstrated experimentally. [Pg.531]

Adsorption of the enzymes subtilisin BPN and lysozyme onto model hydrophilic and hydrophobic surfaces was examined using adsorption isotherm experiments, infrared reflection-absorption spectroscopy (IRRAS), and attenuated total reflectance (ATR) infrared (IR) spectroscopy. For both lysozyme and BPN, most of the enzyme adsorbed onto the model surface within ten seconds. Nearly an order-of-magnitude more BPN adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. No changes in secondary structure were noted for either enzyme. The appearance of carboxylate bands in some of the adsorbed BPN spectra suggests hydrolysis of amide bonds has occurred. [Pg.225]


See other pages where Hydrophobic surface, model is mentioned: [Pg.172]    [Pg.172]    [Pg.264]    [Pg.87]    [Pg.334]    [Pg.257]    [Pg.219]    [Pg.310]    [Pg.94]    [Pg.189]    [Pg.148]    [Pg.338]    [Pg.105]    [Pg.696]    [Pg.229]    [Pg.577]    [Pg.312]    [Pg.206]    [Pg.588]    [Pg.119]    [Pg.601]    [Pg.603]    [Pg.22]    [Pg.266]    [Pg.11]    [Pg.228]    [Pg.228]    [Pg.229]    [Pg.234]   
See also in sourсe #XX -- [ Pg.229 ]

See also in sourсe #XX -- [ Pg.229 ]




SEARCH



Hydrophobic model

Hydrophobic surfaces

Surface Hydrophobation

Surface hydrophobicity

© 2024 chempedia.info