Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophilicity/hydrophobicity properties block copolymers

Polyall lene Oxide Block Copolymers. The higher alkylene oxides derived from propjiene, butylene, styrene (qv), and cyclohexene react with active oxygens in a manner analogous to the reaction of ethylene oxide. Because the hydrophilic oxygen constitutes a smaller proportion of these molecules, the net effect is that the oxides, unlike ethylene oxide, are hydrophobic. The higher oxides are not used commercially as surfactant raw materials except for minor quantities that are employed as chain terminators in polyoxyethylene surfactants to lower the foaming tendency. The hydrophobic nature of propylene oxide units, —CH(CH2)CH20—, has been utilized in several ways in the manufacture of surfactants. Manufacture, properties, and uses of poly(oxyethylene- (9-oxypropylene) have been reviewed (98). [Pg.254]

The tendency of nonionics to produce foam varies. Some, such as the block copolymers, are even used as defoamers. Their wetting, detergency and emulsifying properties also vary widely, depending to a large extent on the balance between the hydrophobic and hydrophilic (oxyethylene) portions. [Pg.30]

AB block copolymers containing two water-soluble blocks are often referred to as double-hydrophilic block copolymers. These copolymers have spurred much interest in recent years because they can generally be transformed into amphiphilic copolymers once an adequate stimulus is applied. In other words, one of the hydrophilic water-soluble blocks can be transformed into a hydrophobic block whenever a given property of the aqueous medium is changed. Since these copolymers may contain one or two polyelectrolytic blocks, the typical features of polyelectrolytes described in Sect. 4.2 should also be considered for some double-hydrophilic block copolymers. [Pg.106]

Thermoresponsive polymeric micelles with PIPAAm block copolymers can be expected to combine passive spatial targeting specificity with a stimuli-responsive targeting mechanism. We have developed LCSTs of PIPAAm chains with preservation of the thermoresponsive properties such as a phase transition rate by copolymerization with hydrophobic or hydrophilic comonomers into PIPAAm main chains. Micellar outer shell chains with the LCSTs adjusted between body temperature and hyperthermic temperature can play a dual role in micelle stabilization at a body temperature due to their hydrophilicity and initiation of drug release by hyperthermia resulting from outer shell structural deformation. Simultaneously, micelle interactions with cells could be enhanced at heated sites due... [Pg.45]

In ionic block copolymers, micellization occurs in a solvent that is selective for one of the blocks, as for non-ionic block copolymers. However, the ionic character of the copolymer introduces a new parameter governing the structure and properties of micellar structures. In particular, the ionic strength plays an important role in the conformation of the copolymer, and the presence of a high charge density leads to some specific properties unique to ionic block copolymers. Many of the studies on ionic block copolymers have been undertaken with solvents selective for the ionic polyelectrolyte block, generally water or related solvents, such as water-methanol mixtures. However, it has been observed that it is often difficult to dissolve ionic hydrophilic-hydrophobic block copolymers in water. These dissolution problems are far more pronounced than for block copolymers in non-aqueous selective solvents, although they do not always reflect real insolubility. In many cases, dissolution can be achieved if a better solvent is used first and examples of the use of cosolvents are listed by Selb and Gallot (1985). [Pg.182]

Block copolymers that contain segments with different characteristics, such as hydrophobic and hydrophilic blocks, can form phase-separated solid systems, or they can be employed to form micelles or vesicles in aqueous media. Considering that the lengths of each polymer block can be controlled, the opportunities for property variations are almost infinite through such systems. [Pg.87]

Recently, a new class of inhibitors (nonionic polymer surfactants) was identified as promising agents for drug formulations. These compounds are two- or three-block copolymers arranged in a linear ABA or AB structure. The A block is a hydrophilic polyethylene oxide) chain. The B block can be a hydrophobic lipid (in copolymers BRIJs, MYRJs, Tritons, Tweens, and Chremophor) or a poly(propylene oxide) chain (in copolymers Pluronics [BASF Corp., N.J., USA] and CRL-1606). Pluronic block copolymers with various numbers of hydrophilic EO (,n) and hydrophobic PO (in) units are characterized by distinct hydrophilic-lipophilic balance (HLB). Due to their amphiphilic character these copolymers display surfactant properties including ability to interact with hydrophobic surfaces and biological membranes. In aqueous solutions with concentrations above the CMC, these copolymers self-assemble into micelles. [Pg.605]

Let us compare the kinetics of the selective-solvent-induced collapse of protein-like copolymers with the collapse of random and random-block copolymers [18]. Several kinetic criteria were examined using Langevin molecular dynamics simulations. There are some general results, which seem to be independent of the nature of interactions or the kinetic criteria monitored during the collapse. Here, we restrict our analysis to the evolution of the characteristic ratio f = (Rgp/Rg ) that combines the partial mean-square radii of gyration calculated separately for hydrophobic and hydrophilic beads, k2n and Rg . This ratio takes into account both the properties of compactness and solubility for a heteropolymer globule [70] (compactness is directly related to the mean size of the hydrophobic core, whereas solubility should be dependent on the size of the hydrophilic shell). [Pg.55]

Block Copolymers are macromolecules which are composed of blocks usually in linear as it shown in Fig. 3.20, where it is illustrated a classical block copolymer. Main block copolymers are amphiphilic block copolymers having united hydrophilic blocks to hydrophobic blocks. Amphiphilic block copolymer have surfactant properties and form different kinds of associations, such as micelles, nanospheres, nanocapsules and polymersomes This tipe of association can act like excellent vehicles of several active principles. The composition, aggregate formation and the different applications of these materials have been reviewed [112], Figure 3.20 also illustrates the nanoparticulate drug delivery systems formed by amphiphilic block copolymers and their general characteristics. [Pg.190]

Figure 3.5 shows the organized mesoporous structure of one of these materials. The wide variety of organic molecules with self-assembling properties allows for the synthesis of a myriad of solids with controlled porosity. Cationic surfactants, like the hexadecyltrimethylammonium used to synthesize MCM-41 [26], or three-block copolymers (hydrophilic-hydrophobic-hydrophilic) are two good examples. [Pg.51]

Because of the commercial interest in amphiphilic block copolymers the properties of the amphiphilic linear polymer-dendrimer have been most extensively studied. An illustration of the various phases that can be observed is shown in Fig. 6 for the case of an ABA type block copolymer, where A is the hydrophobic dendrimer and B the hydrophilic PEO [119]. The exact location of the... [Pg.215]

Kapui et al. prepared a novel type of polypyrrole films [168]. The film was impregnated by spherical styrene-methacrylic acid block copolymer micelles with a hydrophobic core of 18 nm and a hydrophilic corona of 100 nm. The properties of the micelle-doped polypyrrole films were investigated by cyclic voltammetry and SECM. It was found that the self-assembled block copolymer micelles in polypyrrole behave as polyanions and the charge compensation by cations has been identified during electrochemical switching of the polymer films. [Pg.236]

Reverse ethylene oxide/propylene oxide block copolymers (in which a hydrophilic core of PEO is terminated at both ends with hydrophobic PO moieties) are used in industrial applications. This is because of the different and unique performance properties compared to the conventional block copolymers, where a hydrophobic PO core is block copolymerized with EO. Dufour and Guyot [30] have built on this observation and synthesized Surfmers in which a PEG core (about 37 EO units) was tipped with about 10 PO units to further react with a chlorine-carrying polymerizable group or with maleic anhydride to produce reactive Surfmers. [Pg.220]

The polymerization described so far is homo-polymerization based on single monomers. Some polymers used in pharmaceutical applications are copolymers. They have properties that each homo-polymer does not exhibit. For example, the copolymer of hydroxyethyl methacrylate and methyl methacrylate is synthesized in order to obtain a polymer exhibiting a hydrophilic/hydrophobic balance. A variety of copolymers (alternating, block, random) can be formed from two different monomers. Special processes produce alternating and block copolymers, while random copolymers are produced by free-radical copolymerization of two monomers. The polymerization steps, such as initiation, propagation, and termination, are the same as in free-radical homo-polymerization. Copolymerization kinetics are depicted as follows ... [Pg.454]


See other pages where Hydrophilicity/hydrophobicity properties block copolymers is mentioned: [Pg.3]    [Pg.38]    [Pg.2915]    [Pg.195]    [Pg.296]    [Pg.150]    [Pg.479]    [Pg.359]    [Pg.15]    [Pg.75]    [Pg.85]    [Pg.47]    [Pg.101]    [Pg.119]    [Pg.122]    [Pg.131]    [Pg.106]    [Pg.664]    [Pg.60]    [Pg.30]    [Pg.275]    [Pg.74]    [Pg.346]    [Pg.76]    [Pg.730]    [Pg.231]    [Pg.157]    [Pg.133]    [Pg.94]    [Pg.197]    [Pg.224]    [Pg.33]    [Pg.144]    [Pg.84]   
See also in sourсe #XX -- [ Pg.268 , Pg.269 ]




SEARCH



Block copolymer properties

Block copolymers, hydrophobic

Hydrophilic block copolymers

Hydrophilic copolymers

Hydrophilic properties

Hydrophilic-hydrophobic block copolymers)

Hydrophilic-hydrophobic property

Hydrophilicity-hydrophobicity

Hydrophilicity/hydrophobicity properties

Hydrophobic copolymers

Hydrophobic properties

Hydrophobic-hydrophilic

Hydrophobic-hydrophilic copolymers

Properties block

Properties hydrophobicity

© 2024 chempedia.info