Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers, hydrophobic

Liquid Crystalline Phases and Emulsifying Properties of Block Copolymer Hydrophobic Aliphatic and Hydrophilic Peptidic Chains... [Pg.116]

Polyall lene Oxide Block Copolymers. The higher alkylene oxides derived from propjiene, butylene, styrene (qv), and cyclohexene react with active oxygens in a manner analogous to the reaction of ethylene oxide. Because the hydrophilic oxygen constitutes a smaller proportion of these molecules, the net effect is that the oxides, unlike ethylene oxide, are hydrophobic. The higher oxides are not used commercially as surfactant raw materials except for minor quantities that are employed as chain terminators in polyoxyethylene surfactants to lower the foaming tendency. The hydrophobic nature of propylene oxide units, —CH(CH2)CH20—, has been utilized in several ways in the manufacture of surfactants. Manufacture, properties, and uses of poly(oxyethylene- (9-oxypropylene) have been reviewed (98). [Pg.254]

Certain block copolymers have also found appHcation as surfactants (88). Eor example, AB or ABA block copolymers in which one block is hydrophilic and one block is hydrophobic have proven useful for emulsifying aqueous and non-aqueous substances and for wetting the surface of materials. Examples of such surfactants are the poly(propylene oxide- /oi / -ethylene oxide) materials, known as Pluronics (BASC Wyandotte Co.). [Pg.186]

Absorption is widely used as a raw material and/or product recovery technique in separation and purification of gaseous streams containing high concentrations of VOC, especially water-soluble compounds such as methanol, ethanol, isopropanol, butanol, acetone, and formaldehyde. Hydrophobic VOC can be absorbed using an amphiphilic block copolymer dissolved in water. However, as an emission control... [Pg.447]

MAIs may also be formed free radically when all azo sites are identical and have, therefore, the same reactivity. In this case the reaction with monomer A will be interrupted prior to the complete decomposition of all azo groups. So, Dicke and Heitz [49] partially decomposed poly(azoester)s in the presence of acrylamide. The reaction time was adjusted to a 37% decomposition of the azo groups. Surface active MAIs (M, > 10 ) consisting of hydrophobic poly(azoester) and hydrophilic poly(acrylamide) blocks were obtained (see Scheme 22) These were used for emulsion polymerization of vinyl acetate—in the polymerization they act simultaneously as emulsifiers (surface activity) and initiators (azo groups). Thus, a ternary block copolymer was synthesized fairly elegantly. [Pg.745]

The synthesis of block copolymers by macromonotner RAFT polymeriza tion has been discussed in Section 9.5.2 and examples are provide in Table 9.9. RAFT polymerization with thioearbonylthio compounds has been used to make a wide variety of block copolymers and examples arc provided below in Tabic 9.28. The process of block formation is shown in Scheme 9.59. Of considerable interest is the ability to make hydrophilic-hydrophobic block copolymers directly with monomers such as AA, DMA, NIPAM and DMAEMA. Doubly hydrophilic blocks have also been prepared.476 638 The big advantage of RAFT polymerization is its tolerance of unprotected functionality. [Pg.543]

Sutoh and Noda154 succeeded in proving, by synthesizing block copolymers of the structure (Gly-Pro-Pro)n(Gly-Ala-Pro)m-(Gly-Pro-Pro)n, that with increasing imino add content, AS° changes to higher positive values. They do, however, not relate this to lower entropy losses of conformation but to hydrophobic interactions of the proline residues in the helical state. [Pg.195]

Preparation of polyfethylene oxide) (PEO) and poly(arylene ether) based hydrophilic-hydrophobic block copolymer is of special interest because PEO has been proven to be particularly reliable and versatile for the surface modification of biomaterials. The first poly(ediylene oxide)-/ /oc/c-polysulfonc (PEO-fc-PSF) copolymers were reported by Aksenov et al.217 They employed diisocyanate chemistry to link hydroxy-terminated sulfone oligomers and polyfethylene... [Pg.359]

Recently, unique vesicle-forming (spherical bUayers that offer a hydrophilic reservoir, suitable for incorporation of water-soluble molecules, as well as hydrophobic wall that protects the loaded molecules from the external solution) setf-assembUng peptide-based amphiphilic block copolymers that mimic biological membranes have attracted great interest as polymersomes or functional polymersomes due to their new and promising applications in dmg delivery and artificial cells [ 122]. However, in all the cases the block copolymers formed are chemically dispersed and are often contaminated with homopolymer. [Pg.126]

Kwon GS, Naito M, Kataoka K, Yokoyama M, Sakurai Y, Okano T (1994) Block copolymer micelles as vehicles for hydrophobic drugs. Colloids Surf B 2 429-434... [Pg.23]

Micellar nanocarriers have already been applied successfully for delivery of hydro-phobic drugs [86]. These carriers are usually the product of self-assembled block copolymers, consisting of a hydrophilic block and a hydrophobic block. Generally, an ELP with a transition temperature below body temperature is used as hydrophobic block and the hydrophilic block can be an ELP with a transition temperature above body temperature or another peptide or protein. The EPR effect also directs these types of carriers towards tumor tissue. [Pg.88]

In 2000, the first example of ELP diblock copolymers for reversible stimulus-responsive self-assembly of nanoparticles was reported and their potential use in controlled delivery and release was suggested [87]. Later, these type of diblock copolypeptides were also covalently crossUnked through disulfide bond formation after self-assembly into micellar nanoparticles. In addition, the encapsulation of l-anilinonaphthalene-8-sulfonic acid, a hydrophobic fluorescent dye that fluoresces in hydrophobic enviromnent, was used to investigate the capacity of the micelle for hydrophobic drugs [88]. Fujita et al. replaced the hydrophilic ELP block by a polyaspartic acid chain (D ). They created a set of block copolymers with varying... [Pg.88]

Although the potassium superoxide route can be universally applied to various alkyl methacrylates, it is experimentally more difficult than simple acid hydrolysis. In addition, limited yields do not permit well-defined hydrophobic-hydrophilic blocks. On the other hand, acid catalyzed hydrolysis is limited to only a few esters such as TBMA, but yields of carboxylate are quantitative. Hydrolysis attempts of poly(methyl methacrylate) (PMMA) and poly(isopropyl methacrylate) (PIPMA) do not yield an observable amount of conversion to the carboxylic acid under the established conditions for poly(t-butyl methacrylate) (PTBMA). This allows for selective hydrolysis of all-acrylic block copolymers. [Pg.270]

The tendency of nonionics to produce foam varies. Some, such as the block copolymers, are even used as defoamers. Their wetting, detergency and emulsifying properties also vary widely, depending to a large extent on the balance between the hydrophobic and hydrophilic (oxyethylene) portions. [Pg.30]

The formation of polymeric capsules can also be achieved by the cross-linking of self-assembled amphiphilic block copolymers [85]. The hydrophobic section of the polymer in an aqueous solution will tend to aggregate on the interior of the micelle, whereas the hydrophilic ends will form the outer shell of the micelle. If the hydrophilic end is appropriately functionalized, it can be cross-linked, giving a polymeric shell. The overarching concept is shown in Figure 5.10. [Pg.156]

The vesicles made from lipid bilayers are analogous to polymersomes, which are vesicles formed from high molecular weight amphiphilic block copolymers [94—96], Unlike the micelles discussed earlier from the similar copolymer components, the presence of bilayer walls formed from the aggregation of hydrophobic domains provides new properties. They can be designed to respond, for example, by opening or by disassembly, to external stimuli such as pH, heat, light, and redox processes [97]. This makes them usable as scaffolds for cascade reactions, even those with combinations of enzymes [98, 99]. [Pg.157]

Mean-field lattice theory proved to be capable of predicting the phase behaviour of the ternary block copolymer polyethylene-b-poly(propylene oxide)-b-poly(ethylene oxide), PE-b-PPO-b-PEO in the selective solvent water [164], The ethylene block is known to be highly hydrophobic, and its hydrophobicity does not depend strongly on temperature. The difference in hydrophobicity between PPO and PEO, on the other hand, is moderate... [Pg.197]

Recently, many studies have focused on self-assembled biodegradable nanoparticles for biomedical and pharmaceutical applications. Nanoparticles fabricated by the self-assembly of amphiphilic block copolymers or hydrophobically modified polymers have been explored as drug carrier systems. In general, these amphiphilic copolymers consisting of hydrophilic and hydrophobic segments are capable of forming polymeric structures in aqueous solutions via hydrophobic interactions. These self-assembled nanoparticles are composed of an inner core of hydrophobic moieties and an outer shell of hydrophilic groups [35, 36]. [Pg.37]

Polymer micelles are nanometer sized (usually several tens of nanometers) self-assembled particles having a hydrophobic core and hydrophilic outer shell composed of amphiphilic AB- or ABA-type block copolymers, and are utilized as drug delivery vehicles. The first polymer micelle-type drug delivery vehicle was made of PEG-b-poly(aspartic acid) (PEG-b-PAsp), immobilizing the hydro-phobic anticancer drugDXR [188-191]. After this achievement by Kataoka et al., a great amount of research on polymer micelles has been carried out, and there are several reviews available on the subject [192-194]. [Pg.82]

Fig. 30 Types of nanocarriers for drug delivery, (a) Polymeric nanoparticles polymeric nanoparticles in which drugs are conjugated to or encapsulated in polymers, (b) Polymeric micelles amphiphilic block copolymers that form nanosized core-shell structures in aqueous solution. The hydrophobic core region serves as a reservoir for hydrophobic drugs, whereas hydrophilic shell region stabilizes the hydrophobic core and renders the polymer water-soluble. Fig. 30 Types of nanocarriers for drug delivery, (a) Polymeric nanoparticles polymeric nanoparticles in which drugs are conjugated to or encapsulated in polymers, (b) Polymeric micelles amphiphilic block copolymers that form nanosized core-shell structures in aqueous solution. The hydrophobic core region serves as a reservoir for hydrophobic drugs, whereas hydrophilic shell region stabilizes the hydrophobic core and renders the polymer water-soluble.

See other pages where Block copolymers, hydrophobic is mentioned: [Pg.27]    [Pg.479]    [Pg.452]    [Pg.455]    [Pg.630]    [Pg.282]    [Pg.359]    [Pg.26]    [Pg.31]    [Pg.149]    [Pg.226]    [Pg.3]    [Pg.15]    [Pg.16]    [Pg.88]    [Pg.516]    [Pg.227]    [Pg.497]    [Pg.504]    [Pg.60]    [Pg.73]    [Pg.75]    [Pg.75]    [Pg.85]    [Pg.86]    [Pg.102]    [Pg.47]    [Pg.101]   
See also in sourсe #XX -- [ Pg.8 , Pg.10 , Pg.34 , Pg.35 , Pg.47 , Pg.48 , Pg.53 , Pg.64 , Pg.65 ]




SEARCH



Block copolymer hydrophobic polyurethane

Block copolymers, hydrophobic associations

Hydrophilic-hydrophobic block copolymers)

Hydrophilicity/hydrophobicity properties block copolymers

Hydrophobic copolymers

© 2024 chempedia.info