Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers properties

Table I. Glassy-Glassy Block Copolymer Properties... Table I. Glassy-Glassy Block Copolymer Properties...
Block copolymers are an important class of polymers used in many applications from thermoplastic elastomers to polymer-blend stabilizers. Their synthesis is most often done by ionic polymerization, which is both costly and sometimes difficult to control. However, block copolymer properties strongly depend, for example, on the exact chemical composition, block molar mass, and block yield. These parameters can be evaluated in a single experiment using copolymer GPC with multiple detection. [Pg.442]

Hytrel TEEElastomer block copolymers property profile is given in Table 3.6. [Pg.207]

Reyes-Ortega, E, Rodriguez, G, Aguilar, M. R., Lord, M., Whitelock, J., Stenzel, M. H. and SAN Roman, J. (2013a). Encapsulation of low molecular weight heparin (bemiparm) into polymeric nanoparticles obtained from cationic block copolymers Properties and cell activity. Journal of Materials Chemistry B, 1,850-860. [Pg.87]

In block copolymers [8, 30], long segments of different homopolymers are covalently bonded to each otlier. A large part of syntliesized compounds are di-block copolymers, which consist only of two blocks, one of monomers A and one of monomers B. Tri- and multi-block assemblies of two types of homopolymer segments can be prepared. Systems witli tliree types of blocks are also of interest, since in ternary systems the mechanical properties and tire material functionality may be tuned separately. [Pg.2526]

The desired form in homopolymers is the isotactic arrangement (at least 93% is required to give the desired properties). Copolymers have a random arrangement. In block copolymers a secondary reactor is used where active polymer chains can further polymerize to produce segments that use ethylene monomer. [Pg.1021]

Block copolymers are closer to blends of homopolymers in properties, but without the latter s tendency to undergo phase separation. As a matter of fact, diblock copolymers can be used as surfactants to bind immiscible homopolymer blends together and thus improve their mechanical properties. Block copolymers are generally prepared by sequential addition of monomers to living polymers, rather than by depending on the improbable rjr2 > 1 criterion in monomers. [Pg.434]

G-5—G-9 Aromatic Modified Aliphatic Petroleum Resins. Compatibihty with base polymers is an essential aspect of hydrocarbon resins in whatever appHcation they are used. As an example, piperylene—2-methyl-2-butene based resins are substantially inadequate in enhancing the tack of 1,3-butadiene—styrene based random and block copolymers in pressure sensitive adhesive appHcations. The copolymerization of a-methylstyrene with piperylenes effectively enhances the tack properties of styrene—butadiene copolymers and styrene—isoprene copolymers in adhesive appHcations (40,41). Introduction of aromaticity into hydrocarbon resins serves to increase the solubiHty parameter of resins, resulting in improved compatibiHty with base polymers. However, the nature of the aromatic monomer also serves as a handle for molecular weight and softening point control. [Pg.354]

Styrenic block copolymers (SBCs) are also widely used in HMA and PSA appHcations. Most hot melt appHed pressure sensitive adhesives are based on triblock copolymers consisting of SIS or SBS combinations (S = styrene, I = isoprene B = butadiene). Pressure sensitive adhesives typically employ low styrene, high molecular weight SIS polymers while hot melt adhesives usually use higher styrene, lower molecular weight SBCs. Resins compatible with the mid-block of an SBC improves tack properties those compatible with the end blocks control melt viscosity and temperature performance. [Pg.358]

Properties have been determined for a series of block copolymers based on poly[3,3-bis(ethoxymethyl)oxetane] and poly [3,3-bis(methoxymethyl)oxetane]- (9-tetrahydrofuran. The block copolymers had properties suggestive of a thermoplastic elastomer (308). POX was a good main chain for a weU-developed smectic Hquid crystalline state when cyano- or fluorine-substituted biphenyls were used as mesogenic groups attached through a four-methylene spacer (309,310). Other side-chain Hquid crystalline polyoxetanes were observed with a spacer-separated azo moiety (311) and with laterally attached mesogenic groups (312). [Pg.368]

In order to achieve the desired fiber properties, the two monomers were copolymerized so the final product was a block copolymer of the ABA type, where A was pure polyglycoHde and B, a random copolymer of mostly poly (trimethylene carbonate). The selected composition was about 30—40% poly (trimethylene carbonate). This suture reportedly has exceUent flexibiHty and superior in vivo tensile strength retention compared to polyglycoHde. It has been absorbed without adverse reaction ia about seven months (43). MetaboHsm studies show that the route of excretion for the trimethylene carbonate moiety is somewhat different from the glycolate moiety. Most of the glycolate is excreted by urine whereas most of the carbonate is excreted by expired CO2 and uriae. [Pg.191]

Among the techniques employed to estimate the average molecular weight distribution of polymers are end-group analysis, dilute solution viscosity, reduction in vapor pressure, ebuUiometry, cryoscopy, vapor pressure osmometry, fractionation, hplc, phase distribution chromatography, field flow fractionation, and gel-permeation chromatography (gpc). For routine analysis of SBR polymers, gpc is widely accepted. Table 1 lists a number of physical properties of SBR (random) compared to natural mbber, solution polybutadiene, and SB block copolymer. [Pg.493]

Butadiene copolymers are mainly prepared to yield mbbers (see Styrene-butadiene rubber). Many commercially significant latex paints are based on styrene—butadiene copolymers (see Coatings Paint). In latex paint the weight ratio S B is usually 60 40 with high conversion. Most of the block copolymers prepared by anionic catalysts, eg, butyUithium, are also elastomers. However, some of these block copolymers are thermoplastic mbbers, which behave like cross-linked mbbers at room temperature but show regular thermoplastic flow at elevated temperatures (45,46). Diblock (styrene—butadiene (SB)) and triblock (styrene—butadiene—styrene (SBS)) copolymers are commercially available. Typically, they are blended with PS to achieve a desirable property, eg, improved clarity/flexibiHty (see Polymerblends) (46). These block copolymers represent a class of new and interesting polymeric materials (47,48). Of particular interest are their morphologies (49—52), solution properties (53,54), and mechanical behavior (55,56). [Pg.507]

Polyall lene Oxide Block Copolymers. The higher alkylene oxides derived from propjiene, butylene, styrene (qv), and cyclohexene react with active oxygens in a manner analogous to the reaction of ethylene oxide. Because the hydrophilic oxygen constitutes a smaller proportion of these molecules, the net effect is that the oxides, unlike ethylene oxide, are hydrophobic. The higher oxides are not used commercially as surfactant raw materials except for minor quantities that are employed as chain terminators in polyoxyethylene surfactants to lower the foaming tendency. The hydrophobic nature of propylene oxide units, —CH(CH2)CH20—, has been utilized in several ways in the manufacture of surfactants. Manufacture, properties, and uses of poly(oxyethylene- (9-oxypropylene) have been reviewed (98). [Pg.254]

Whereas random copolymers exhibit one T described by equation 38, block copolymers, because of this microphase separation, exhibit two glass-transition temperatures. The T of each block is close to, if not the same as, the homopolymer from which it was formed. Polymer properties are also affected by the arrangement of the blocks. This is shown for high styrene-containing or high molecular-weight styrene resias of various block arrangements ia Table 3. [Pg.184]

Table 3. Properties of High Styrene—Butadiene Block Copolymers ... Table 3. Properties of High Styrene—Butadiene Block Copolymers ...
Block (Star) Arrangement. The known star polymers, like their linear counterparts, exhibit microphase separation. In general, they exhibit higher viscosities in the melt than their analogous linear materials. Their rheological behavior is reminiscent of network materials rather than linear block copolymers (58). Although they have been used as compatibiUzers in polymer blends, they are not as effective at property enhancements as linear diblocks... [Pg.184]

Block copolymers have become commercially valuable commodities because of their unique stmcture—property relationships. They are best described in terms of their appHcations such as thermoplastic elastomers (TPE), elastomeric fibers, toughened thermoplastic resins, compatibilizers, surfactants, and adhesives (see Elastot rs, synthetic—thermoplastic). [Pg.185]

The physical properties of block copolymer TPE also depend on the type and arrangement of the blocks. Table 5 compares the property advantages of various block copolymer thermoplastic elastomers. [Pg.186]


See other pages where Block copolymers properties is mentioned: [Pg.9]    [Pg.144]    [Pg.4]    [Pg.223]    [Pg.9]    [Pg.144]    [Pg.4]    [Pg.223]    [Pg.482]    [Pg.1705]    [Pg.2377]    [Pg.136]    [Pg.231]    [Pg.316]    [Pg.170]    [Pg.236]    [Pg.269]    [Pg.149]    [Pg.151]    [Pg.238]    [Pg.259]    [Pg.289]    [Pg.302]    [Pg.364]    [Pg.415]    [Pg.214]    [Pg.498]    [Pg.442]    [Pg.183]    [Pg.183]   
See also in sourсe #XX -- [ Pg.146 , Pg.147 , Pg.148 , Pg.149 , Pg.150 ]

See also in sourсe #XX -- [ Pg.142 , Pg.475 ]

See also in sourсe #XX -- [ Pg.10 , Pg.56 ]

See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.142 , Pg.475 ]




SEARCH



Block copolymer stress-strain properties

Block copolymers basic properties

Block copolymers critical properties

Block copolymers dynamic properties

Block copolymers properties of fluorinated

Block copolymers solution properties

Block copolymers supramolecular properties

Block copolymers, microdomain related properties

Bulk properties, block copolymers

Conjugated-lnsulating Block Copolymers Synthesis, Morphology, and Electronic Properties

Hydrophilicity/hydrophobicity properties block copolymers

Mechanical properties block copolymers

Morphologies and Photophysical Properties of Conjugated Rod-Coil Block Copolymers

Properties block

Properties of Styrenic Block Copolymer Elastomers

Properties of block copolymers phase separation in solution and at solid state

Scaling properties based block copolymers

Siloxanes block copolymers, properties

Styrenic block copolymer properties

Surface properties block copolymers

© 2024 chempedia.info