Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis quantitative

For the higher alkoxy groups, standard carbon and hydrogen analysis may be used, although careful sample preparation is required because of the ease of hydrolysis. Quantitative vapor-phase chromatography of alcohol Hberated during hydrolysis may also be used, but care must be taken in this case to ensure that hydrolysis is complete before the estimation is carried out. [Pg.28]

As mentioned in the introduction to ch. 2, if the procedures described in 2.1.2 and 2.1.3 are used with only one time of hydrolysis, quantitation of at least 13 of the 20 common amino acids may be in error. Special methods that may be utilized to obtain more accurate analyses of these problem amino acids and their derivatives are given below. [Pg.17]

Gas chromatography with flame ionization detection (GC-FID). Total MHPG, free and conjugated, was extracted from urine with ethyl acetate after enzymatic hydrolysis. Quantitative analysis was carried out with the GC-FID technique. Some difficulties were encountered in the purification of the urinary extracts and in choosing a derivative which would give satisfactory resolution on GC. The following efforts were made toward improving the feasibility and the specificity of the method. [Pg.216]

It is obvious that a route to effective, stoichiometric decomposition of TBPO in the presence of a stannous salt requires complete dissociation or hydrolysis of the latter through a change in reaction condition (e.g., an acidic pH) or the use of a more rapidly hydrolyzed stemnous salt. It should be noted that stannous chloride, which generates an acidic medium on hydrolysis, quantitatively decomposes TBPO. Further, stannous laurate, which contains the lauroate moiety, in the presence of emulsifiers such as sodium lauryl sulfate or dodecylbenzene sulfonate results in a more rapid polymerization rate and a higher conversion of VCM than stannous octoate, indicative of a greater availability of the effective reductant (i.e., a stannous ion). The stannous laurate may be solubilized in the aqueous phase and the resultant mi-... [Pg.119]

It must be kept under an atmosphere of nitrogen or carbon dioxide it reduces, for example, Fe(III) to Fe(II) and nitro-organic compounds RNO2 to amines RNH2 (it may be used quantitatively to estimate nitro-compounds). In neutral solution, hydrolysis occurs to give species such as [Ti(0H)(H20)s], and with alkali an insoluble substance formulated as Ti203 aq is produced this is rapidly oxidised in air. [Pg.372]

As an example, experimental kinetic data on the hydrolysis of amides under basic conditions as well as under acid catalysis were correlated with quantitative data on charge distribution and the resonance effect [13]. Thus, the values on the free energy of activation, AG , for the acid catalyzed hydrolysis of amides could be modeled quite well by Eq. (5)... [Pg.183]

Although the acetylation of alcohols and amines by acetic anhydride is almost invariably carried out under anhydrous conditions owing to the ready hydrolysis of the anhydride, it has been shown by Chattaway (1931) that phenols, when dissolved in aqueous sodium hydroxide solution and shaken with acetic anhydride, undergo rapid and almost quantitative acetylation if ice is present to keep the temperature low throughout the reaction. The success of this method is due primarily to the acidic nature of the phenols, which enables them to form soluble sodium derivatives, capable of reacting with the acetic... [Pg.109]

The same method can clearly be applied to the quantitative saponifica- tion or hydrolysis of most esters. Hence it may equally well be used for the quantitative estimation of a known ester in a crude sample. [Pg.457]

It is frequently advisable in the routine examination of an ester, and before any derivatives are considered, to determine the saponification equivalent of the ester. In order to ensure that complete hydrolysis takes place in a comparatively short time, the quantitative saponi fication is conducted with a standardised alcoholic solution of caustic alkali—preferably potassium hydroxide since the potassium salts of organic acids are usuaUy more soluble than the sodium salts. A knowledge of the b.p. and the saponification equivalent of the unknown ester would provide the basis for a fairly accurate approximation of the size of the ester molecule. It must, however, be borne in mind that certain structures may effect the values of the equivalent thus aliphatic halo genated esters may consume alkali because of hydrolysis of part of the halogen during the determination, nitro esters may be reduced by the alkaline hydrolysis medium, etc. [Pg.392]

Crystalline derivatives, suitable for identification and characterisation are dealt with in Section IV, 114, but the preparation of the following, largely liquid, derivatives will be described in the following Sections. When phenols are dissolved in aqueous sodium hydroxide solution and shaken with acetic anhydride, they undergo rapid and almost quantitative acetylation if the temperature is kept low throughout the reaction. This is because phenols form readily soluble sodium derivatives, which react with acetic anhydride before the latter undergoes appreciable hydrolysis, for example ... [Pg.665]

It may be converted into dibromofluorescein diacetate as follows. Reflux a mixture of 10 g. of dibromofluorescein, 40 ml. of redistilled acetic anhydride and 1 drop of concentrated sulphuric acid for 1 hour, pour into water, filter, wash, and dry the resulting diacetate (95 per cent, yield) has m.p. 210°. Upon recrystallisation from acetic anhydride or nitrobenzene, the pure diacetate (colourless or pale yellow plates), m.p. 211°, is obtained. Hydrolysis with alcoholic sulphuric acid gives a quantitative yield of pure dibromofluorescein, m.p. 285°. [Pg.987]

Perhaps the most extensively studied catalytic reaction in acpreous solutions is the metal-ion catalysed hydrolysis of carboxylate esters, phosphate esters , phosphate diesters, amides and nittiles". Inspired by hydrolytic metalloenzymes, a multitude of different metal-ion complexes have been prepared and analysed with respect to their hydrolytic activity. Unfortunately, the exact mechanism by which these complexes operate is not completely clarified. The most important role of the catalyst is coordination of a hydroxide ion that is acting as a nucleophile. The extent of activation of tire substrate througji coordination to the Lewis-acidic metal centre is still unclear and probably varies from one substrate to another. For monodentate substrates this interaction is not very efficient. Only a few quantitative studies have been published. Chan et al. reported an equilibrium constant for coordination of the amide carbonyl group of... [Pg.46]

The amino add analysis of all peptide chains on the resins indicated a ratio of Pro Val 6.6 6.0 (calcd. 6 6). The peptides were then cleaved from the resin with 30% HBr in acetic acid and chromatogra phed on sephadex LH-20 in 0.001 M HCl. 335 mg dodecapeptide was isolated. Hydrolysis followed by quantitative amino acid analysis gave a ratio of Pro Val - 6.0 5.6 (calcd. 6 6). Cycll2ation in DMF with Woodward s reagent K (see scheme below) yielded after purification 138 mg of needles of the desired cyc-lododecapeptide with one equiv of acetic add. The compound yielded a yellow adduct with potassium picrate, and here an analytically more acceptable ratio Pro Val of 1.03 1.00 (calcd. 1 1) was found. The mass spectrum contained a molecular ion peak. No other spectral measurements (lack of ORD, NMR) have been reported. For a thirty-six step synthesis in which each step may cause side-reaaions the characterization of the final product should, of course, be more elaborate. [Pg.236]

Noncatalytic Reactions Chemical kinetic methods are not as common for the quantitative analysis of analytes in noncatalytic reactions. Because they lack the enhancement of reaction rate obtained when using a catalyst, noncatalytic methods generally are not used for the determination of analytes at low concentrations. Noncatalytic methods for analyzing inorganic analytes are usually based on a com-plexation reaction. One example was outlined in Example 13.4, in which the concentration of aluminum in serum was determined by the initial rate of formation of its complex with 2-hydroxy-1-naphthaldehyde p-methoxybenzoyl-hydrazone. ° The greatest number of noncatalytic methods, however, are for the quantitative analysis of organic analytes. For example, the insecticide methyl parathion has been determined by measuring its rate of hydrolysis in alkaline solutions. [Pg.638]

Acylated Corticoids. The corticoid side-chain of (30) was converted iato the cycHc ortho ester (96) by reaction with a lower alkyl ortho ester RC(OR )2 iu benzene solution ia the presence of i ra-toluenesulfonic acid (88). Acid hydrolysis of the product at room temperature led to the formation of the 17-monoesters (97) ia nearly quantitative yield. The 17-monoesters (97) underwent acyl migration to the 21-monoesters (98) on careful heating with. In this way, prednisolone 17a,21-methylorthovalerate was converted quantitatively iato prednisolone 17-valerate, which is a very active antiinflammatory agent (89). The iatermediate ortho esters also are active. Thus, 17a,21-(l -methoxy)-pentyhdenedioxy-l,4-pregnadiene-liP-ol-3,20-dione [(96), R = CH3, R = C Hg] is at least 70 times more potent than prednisolone (89). The above conversions... [Pg.104]

Under sufficient pressure to permit a Hquid phase at 55—56°C, the acetaldehyde monoperoxyacetate decomposes nearly quantitatively into anhydride and water in the presence of copper. Anhydride hydrolysis is unavoidable, however, because of the presence of water. When the product is removed as a vapor, an equiUbrium concentration of anhydride higher than that of acetic acid remains in the reactor. Water is normally quite low. Air entrains the acetic anhydride and water as soon as they form. [Pg.76]

Even though the PO2F 2 is considered to be hydrolytically unstable, hydrolysis is slow in a neutral solution. However, in a solution initially 0.1 N in NaOH, at 70°C, NaP02p2 is quantitatively hydrolyzed to give the P03p and F tons v ithin 10 min (82). [Pg.226]

The hydrolysis of phosphoms sulfides has been studied quantitatively. A number of products are formed (Table 6). Whereas phosphoms(V) sulfide reacts slowly with cold water, the reaction is more rapid upon heating, producing mainly hydrogen sulfide and orthophosphoric acid, H2PO4. At high pH, P4S Q hydroly2es to a mixture of products containing thiophosphates and sulfides. [Pg.363]

The estimation of alkoxy groups is not such a simple task. One method (26,68) involves hydrolysis and oxidation of the Hberated alcohol with excess standard potassium dichromate solution. The excess may then be estimated iodometrically. This method is suitable only for methoxides, ethoxides, and isopropoxides quantitative conversion to carbon dioxide, acetic acid, and acetone, respectively, takes place. An alternative method for ethoxides is oxidation followed by distillation, and titration of the Hberated acetic acid. [Pg.28]

W ter ndAlcohols. Silanes do not react with pure water or slightly acidified water under normal conditions. A rapid reaction occurs, however, in basic solution with quantitative evolution of hydrogen (3). Alkali leached from glass is sufficient to lead to the hydrolysis of silanes. [Pg.22]

Complete basic hydrolysis, followed by the quantitative measurement of hydrogen formed, can be used to determine the number of Si—H and Si—Si bonds present in a particular compound. One molecule of H2 is Hberated for each Si—H and Si—Si bond present. The total siUcon content can be obtained from analysis of the resulting siUcate solution. [Pg.22]

In contrast to the hydrolysis technology, the methanolysis process allows for the one-step synthesis of organosdoxane oligomers and methyl chloride without formation of hydrochloric acid (64,65). The continuous methanolysis can also yield quantitatively linear sdanol-stopped oligomers by recycle of the cycHc fraction into the hydrolysis loop. [Pg.45]

Industrial Synthetic Improvements. One significant modification of the Stembach process is the result of work by Sumitomo chemists in 1975, in which the optical resolution—reduction sequence is replaced with a more efficient asymmetric conversion of the meso-cyc. 02Lcid (13) to the optically pure i7-lactone (17) (Fig. 3) (25). The cycloacid is reacted with the optically active dihydroxyamine [2964-48-9] (23) to quantitatively yield the chiral imide [85317-83-5] (24). Diastereoselective reduction of the pro-R-carbonyl using sodium borohydride affords the optically pure hydroxyamide [85317-84-6] (25) after recrystaUization. Acid hydrolysis of the amide then yields the desired i7-lactone (17). A similar approach uses chiral alcohols to form diastereomic half-esters stereoselectivity. These are reduced and direedy converted to i7-lactone (26). In both approaches, the desired diastereomeric half-amide or half-ester is formed in excess, thus avoiding the cosdy resolution step required in the Stembach synthesis. [Pg.30]

Arsenic trioxide may be made by burning arsenic in air or by the hydrolysis of an arsenic trihaUde. Commercially, it is obtained by roasting arsenopyrite [1303-18-0] FeAsS. It dissolves in water to a slight extent (1.7 g/100 g water at 25°C) to form a weaMy acidic solution which probably contains the species H AsO, orthoarsenous acid [36465-76-6]. The oxide is amphoteric and hence soluble in acids and bases. It is frequendy used as a primary analytical standard in oxidimetry because it is readily attainable in a high state of purity and is quantitatively oxidized by many reagents commonly used in volumetric analysis, eg, dichromate, nitric acid, hypochlorite, and inon(III). [Pg.334]

For the most part boric acid esters are quantitated by hydrolysis in hot water followed by determination of the amount of boron by the mannitol titration (see Boron compounds, boric oxide, boric acid and borates). Separation of and measuring mixtures of borate esters can be difficult. Any water present causes hydrolysis and in mixtures, as a result of transesterification, it is possible to have a number of borate esters present. For some borate esters, such as triethanolamine borate, hydrolysis is sufftciendy slow that quantitation by hydrolysis and titration cannot be done. In these cases, a sodium carbonate fusion is necessary. [Pg.216]


See other pages where Hydrolysis quantitative is mentioned: [Pg.1177]    [Pg.494]    [Pg.480]    [Pg.1177]    [Pg.494]    [Pg.480]    [Pg.2114]    [Pg.2966]    [Pg.455]    [Pg.457]    [Pg.169]    [Pg.312]    [Pg.113]    [Pg.116]    [Pg.340]    [Pg.6]    [Pg.439]    [Pg.4]    [Pg.62]    [Pg.91]    [Pg.321]    [Pg.252]    [Pg.458]   
See also in sourсe #XX -- [ Pg.392 , Pg.1065 ]

See also in sourсe #XX -- [ Pg.392 , Pg.1065 ]

See also in sourсe #XX -- [ Pg.392 , Pg.1065 ]

See also in sourсe #XX -- [ Pg.392 , Pg.1065 ]




SEARCH



Quantitative hydrolysis of ethyl benzoate

© 2024 chempedia.info