Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis exopeptidases

There are two main classes of proteolytic digestive enzymes (proteases), with different specificities for the amino acids forming the peptide bond to be hydrolyzed. Endopeptidases hydrolyze peptide bonds between specific amino acids throughout the molecule. They are the first enzymes to act, yielding a larger number of smaller fragments, eg, pepsin in the gastric juice and trypsin, chymotrypsin, and elastase secreted into the small intestine by the pancreas. Exopeptidases catalyze the hydrolysis of peptide bonds, one at a time, fi"om the ends of polypeptides. Carboxypeptidases, secreted in the pancreatic juice, release amino acids from rhe free carboxyl terminal, and aminopeptidases, secreted by the intestinal mucosal cells, release amino acids from the amino terminal. Dipeptides, which are not substrates for exopeptidases, are hydrolyzed in the brush border of intestinal mucosal cells by dipeptidases. [Pg.477]

The NC-IUBMB classifies peptidases (EC 3.4) into exopeptidases (EC 3.4.11-19), which remove one or a few amino acids, and endopeptidases (proteinases, EC 3.4.21-99), which catalyze the cleavage of peptide bonds away from either end of the polypeptide chain (Fig. 2.1). Exopeptidases are further subdivided into enzymes that carry out hydrolysis at the N-terminus or the C-terminus (Figs. 2.1 and 2.2). Thus, aminopeptidases (EC 3.4.11) cleave a single amino acid from the N-terminus [3] those removing a dipep-... [Pg.30]

Peptide hydrolases (peptidases or proteases, i.e., enzymes hydrolyzing peptide bonds in peptides and proteins, see Chapt. 2) have received particular attention among hydrolases. As already described in Chapt. 2, peptidases are divided into exopeptidases (EC 3.4.11 -19), which cleave one or a few amino acids from the N- or C-terminus, and endopeptidas-es (proteinases, EC 3.4.21-99), which act internally in polypeptide chains [2], The presentation of enzymatic mechanisms of hydrolysis in the following sections will begin with peptidases and continue with other hydrolases such as esterases. [Pg.68]

The in vitro hydrolysis of insulin has been shown to be catalyzed by exopeptidases and endopeptidases. Carboxypeptidase A (EC 3.4.17.1) cleaves the C-terminus of the B-chain (ThrB3°) and that of the A-chain (AsnA21) [145], Leucyl aminopeptidase (EC 3.4.11.1) cleaves the N-terminus of the B-chain (PheB1) and can continue to shorten it. But, leucyl aminopeptidase appears also able to cleave the N-terminus of the A-chain (GlyA1). In addition to these exopeptidases, entire insulin is also cleaved by endopeptidases of the... [Pg.339]

Protein digestion occurs in two stages endopeptidases catalyse the hydrolysis of peptide bonds within the protein molecule to form peptides, and the peptides are hydrolysed to form the amino acids by exopeptidases and dipeptidases. Enteropeptidase initiates pro-enzyme activation in the small intestine by catalysing the conversion of trypsinogen into trypsin. Trypsin is able to achieve further activation of trypsinogen, i.e. an autocatalytic process, and also activates chymotrypsinogen and pro-elastase, by the selective hydro-... [Pg.80]

These proteolytic enzymes are all endopeptidases, which hydrolyse links in the middle of polypeptide chains. The products of the action of these proteolytic enzymes are a series of peptides of various sizes. These are degraded further by the action of several peptidases (exopeptidases) that remove terminal amino acids. Carboxypeptidases hydrolyse amino acids sequentially from the carboxyl end of peptides. They are secreted by the pancreas in proenzyme form and are each activated by the hydrolysis of one peptide bond, catalysed by trypsin. Aminopeptidases, which are secreted by the absorptive cells of the small intestine, hydrolyse amino acids sequentially from the amino end of peptides. In addition, dipeptidases, which are structurally associated with the glycocalyx of the entero-cytes, hydrolyse dipeptides into their component amino acids. [Pg.80]

There are five distinct families of zinc proteases, classified by the nature of the zinc binding site. These families, and their variously proposed mechanisms, have recently been reviewed in depth.143 The most studied member is the digestive enzyme bovine pancreatic carboxypeptidase A, which is a metalloenzyme containing one atom of zinc bound to its single polypeptide chain of 307 amino acids and Mr 34 472. It is an exopeptidase, which catalyzes the hydrolysis of C-terminal amino acids from polypeptide substrates, and is specific for the large hydrophobic amino acids such as phenylalanine. The closely related carboxypeptidase B catalyzes the hydrolysis of C-terminal lysine and arginine residues. The two en-... [Pg.253]

The International Union of Biochemistry and Molecular Biology recommends that the term peptidase be used synonymously with the term peptide hydrolase (IUBMB, 1992). Thus, in this unit the term peptidase is used in reference to any enzyme that catalyzes the hydrolysis of peptide bonds, without distinguishing between exo- and endopeptidase activities. Peptidases may be assayed using native or modified proteins, peptides, or synthetic substrates. In this unit, the focus is on assays based on the hydrolysis of common, commercially available, protein substrates. Thus, the assays are not intended to be selective for a given peptidase they are designed to provide estimates of overall peptidase activity. Other units in this publication focus on synthetic or model substrates, which can be designed for the measurement of specific endo- and/or exopeptidase activities. [Pg.359]

In addition, in living systems, most biochemical reactions, including ATP hydrolysis, take place during the catalysis of enzymes. The catalytic action of enzymes allows the hydrolysis of proteins, fats, oils, and carbohydrates. As an example, one may consider proteases, enzymes that aid digestion by hydrolyzing peptide bonds in proteins. They catalyze the hydrolysis of interior peptide bonds in peptide chains, as opposed to exopeptidases, another class of enzymes, that catalyze the hydrolysis of terminal peptide bonds, liberating one free amino acid at a time. [Pg.212]

Leucine aminopeptidase (LAP) is a metal-loenzyme that has been inhibited in a slow-binding manner. This exopeptidase catalyzes the hydrolysis of N-terminal amino acids, particularly those with a leucine at the N-termi-nus, although it does have a broad specificity (Equation 17.32). [Pg.737]

The action of these two pancreatic exopeptidases on synthetic substrates, proteins, and peptides has been reviewed in detail by Neurath (1960). The specificity requirements which were deduced from studies with synthetic peptides have been confirmed by studies with polypeptides. The structural requirements of specific substrates for both types of carboxy-peptidase are analogous except for the nature of the amino acids which contain the free, ionized a-carboxyl group at the terminus of the substrate. Carboxypeptidase B hydrolyzes most rapidly those bonds formed by terminal lysyl and arginyl residues, whereas carboxypeptidase A hydrolyzes terminal bonds formed by a variety of aromatic, neutral, or acidic amino acids. Of the natural amino acids only carboxyl-terminal prolyl residues are resistant to the action of the enzyme. The rate of hydrolysis depends upon the nature of the side chains of the amino acids which form the susceptible bonds. Thus, differences in the rate of hydrolysis of different substrates may vary several thousandfold. The methods for application of these peptidases to hydrolysis of proteins have been discussed in detail by Canfield and Anfinsen (1963). [Pg.87]

In a recent study on complete enzymatic hydrolysis (Hill and S( hmidt, 1962), methods similar to those of Frankel were employed, but other endopoptidases as well as highly purified exopeptidases were used instead... [Pg.90]

Protein metabolism is a key physiological process in all forms of life. Proteins are converted to amino acids and then catabolised. The complete hydrolysis of a polypeptide requires mixture of peptidases because individual peptidases do not cleave all peptide bonds. Both exopeptidases and endopeptidases are required for complete conversion of protein to amino acids. [Pg.427]

Proteins and peptides are accessible to enzymatic action due to the susceptibility of specific amino acid sequences, and such proteolysis is a naturally occurring metabolic process in vivo. Degradation pathways generally involve hydrolysis of peptide bonds by a variety of exopeptidases and endopeptidases, and the specific proteolytic enzymes associated with non-invasive routes of administration have been identified in some detail. Enzymatic activity varies depending on the delivery route and a qualitative rank ordering is shown in Table 1. Since a significant portion of dietary protein consumed by humans is assimilated by means... [Pg.2694]

The most studied member of zinc proteases is the digestive enzyme bovine pancreatic carboxypeptidase A (CPA) which is a metalloenzyme containing one atom of zinc bound to its single polypeptide side chain of 307 amino acids with a molecular weight of 34 kD. It is an exopeptidase, which catalyses the hydrolysis of C-terminal amino... [Pg.253]

Combination of two immobilized enzyme columns with HPLC/thermospray MS can be useful for amino acid sequencing and identification. The use of an endopeptidase bioreactor followed by HPLC separation then an exopeptidase column and MS detection can enable sequencing of 3-5 amino acids of each endopeptidase hydrolysis product. The trypsin, hydrolysis/HPLC/ carboxypeptidase A, B, and Y (1 1 1) hydrolysis/ thermospray MS analysis assist in the sequencing of Y-endorphin (Figure 2C,C ). [Pg.20]


See other pages where Hydrolysis exopeptidases is mentioned: [Pg.126]    [Pg.125]    [Pg.41]    [Pg.340]    [Pg.343]    [Pg.365]    [Pg.331]    [Pg.653]    [Pg.609]    [Pg.256]    [Pg.179]    [Pg.363]    [Pg.41]    [Pg.538]    [Pg.494]    [Pg.494]    [Pg.252]    [Pg.287]    [Pg.301]    [Pg.273]    [Pg.273]    [Pg.221]    [Pg.1420]    [Pg.91]    [Pg.92]    [Pg.99]    [Pg.273]    [Pg.166]    [Pg.507]    [Pg.1379]    [Pg.105]    [Pg.559]    [Pg.80]   
See also in sourсe #XX -- [ Pg.31 ]




SEARCH



Exopeptidase

Exopeptidases

Hydrolysis Catalyzed by Exopeptidases

© 2024 chempedia.info