Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrodynamic construction

In concluding this work I wish to express my sincere gratitude to the Director of the AS USSR Institute of Chemical Physics, Academician N. N. Semenov, for his lively interest and valuable discussions, which in large measure determined the direction of our work in a period when the fundamental thermal, diffusive and hydrodynamic constructions were being overgrown with studies of specific chemical systems. I would also like to thank Academician A. F. Ioffe for his attention to the author s work. [Pg.227]

Although in principle the microscopic Hamiltonian contains the infonnation necessary to describe the phase separation kinetics, in practice the large number of degrees of freedom in the system makes it necessary to construct a reduced description. Generally, a subset of slowly varying macrovariables, such as the hydrodynamic modes, is a usefiil starting point. The equation of motion of the macrovariables can, in principle, be derived from the microscopic... [Pg.735]

If a particularly parallel beam is required in the chamber into which it is flowing the beam may be skimmed in the region of hydrodynamic flow. A skimmer is a collimator which is specially constructed in order to avoid shockwaves travelling back into the gas and increasing 7). The gas that has been skimmed away may be pumped off in a separate vacuum chamber. Further collimation may be carried out in the region of molecular flow and a so-called supersonic beam results. When a skimmer is not used, a supersonic jet results this may or may not be collimated. [Pg.396]

The first commercial fluidized bed polyeth)4eue plant was constructed by Union Carbide in 1968. Modern units operate at 100°C and 32 MPa (300 psig). The bed is fluidized with ethylene at about 0.5 m/s and probably operates near the turbulent fluidization regime. The excellent mixing provided by the fluidized bed is necessary to prevent hot spots, since the unit is operated near the melting point of the product. A model of the reactor (Fig. 17-25) that coupes Iduetics to the hydrodynamics was given by Choi and Ray, Chem. Eng. ScL, 40, 2261, 1985. [Pg.1573]

Probe/Insirumentalion Developments The principles of good practice in the design, construction and location of corrosion probes have been reviewed. Specific probe designs which acknowledge hydrodynamic influences and the combined effects of mass and heat transfer have been developed. [Pg.38]

Eulerian two-fluid model coupled with dispersed itequations was applied to predict gas-liquid two-phase flow in cyclohexane oxidation airlift loop reactor. Simulation results have presented typical hydrodynamic characteristics, distribution of liquid velocity and gas hold-up in the riser and downcomer were presented. The draft-tube geometry not only affects the magnitude of liquid superficial velocity and gas hold-up, but also the detailed liquid velocity and gas hold-up distribution in the reactor, the final construction of the reactor lies on the industrial technical requirement. The investigation indicates that CFD of airlift reactors can be used to model, design and scale up airlift loop reactors efficiently. [Pg.528]

The development of hydrodynamic techniques which allow the direct measurement of interfacial fluxes and interfacial concentrations is likely to be a key trend of future work in this area. Suitable detectors for local interfacial or near-interfacial measurements include spectroscopic probes, such as total internal reflection fluorometry [88-90], surface second-harmonic generation [91], probe beam deflection [92], and spatially resolved UV-visible absorption spectroscopy [93]. Additionally, building on the ideas in MEMED, submicrometer or nanometer scale electrodes may prove to be relatively noninvasive probes of interfacial concentrations in other hydrodynamic systems. The construction and application of electrodes of this size is now becoming more widespread and general [94-96]. [Pg.358]

Multiparticle collision dynamics describes the interactions in a many-body system in terms of effective collisions that occur at discrete time intervals. Although the dynamics is a simplified representation of real dynamics, it conserves mass, momentum, and energy and preserves phase space volumes. Consequently, it retains many of the basic characteristics of classical Newtonian dynamics. The statistical mechanical basis of multiparticle collision dynamics is well established. Starting with the specification of the dynamics and the collision model, one may verify its dynamical properties, derive macroscopic laws, and, perhaps most importantly, obtain expressions for the transport coefficients. These features distinguish MPC dynamics from a number of other mesoscopic schemes. In order to describe solute motion in solution, MPC dynamics may be combined with molecular dynamics to construct hybrid schemes that can be used to explore a variety of phenomena. The fact that hydrodynamic interactions are properly accounted for in hybrid MPC-MD dynamics makes it a useful tool for the investigation of polymer and colloid dynamics. Since it is a particle-based scheme it incorporates fluctuations so that the reactive and nonreactive dynamics in small systems where such effects are important can be studied. [Pg.139]

Experimental methods which yield precise and accurate data are essential in studying diffusion-based systems of pharmaceutical interest. Typically the investigator identifies a mechanism and associated mass transport model to be studied and then constructs an experiment which is consistent with the hypothesis being tested. When mass transport models are explicitly involved, experimental conditions must be physically consistent with the initial and boundary conditions specified for the model. Model testing also involves recognition of the assumptions and constraints and their effect on experimental conditions. Experimental conditions in turn affect the maintenance of sink conditions, constant surface area for mass transport, and constant and known hydrodynamic conditions. [Pg.103]

Tube erosion has been observed in both atmospheric and pressurized bed combustors. The scaling analysis presented earlier can be used to construct an accurate hydrodynamic simulation of the commercial bed. This can be used to qualitatively investigate factors related to tube wear such as the location of highest wear around the circumference of an individual tube and the location within the bed of the tube experiencing the highest wear. Quantitative wear rates cannot be obtained from model tests... [Pg.88]

Furthermore, it is sometimes questionable to use literature data for modeling purposes, as small variations in process parameters, reactor hydrodynamics, and analytical equipment limitations could skew selectivity results. To obtain a full product spectrum from an FT process, a few analyses need to be added together to form a complete picture. This normally involves analysis of the tail gas, water, oil, and wax fractions, which need to be combined in the correct ratio (calculated from the drainings of the respective phases) to construct a true product spectrum. Reducing the number of analyses to completely describe the product spectrum is one obvious way to minimize small errors compounding into large variations in... [Pg.231]

These three types of trays have a common feature in that they all have separate downcomers for the passage of liquid from each tray to the one below. There is another class of tray which has no separate downcomers and yet it still employs a tray type of construction giving a hydrodynamic performance between that of a packed and a plate column. Two examples of this type of device are the Kittel plate and a Turbogrid tray(53). Design data for these trays are sparse in the literature and the manufacturer s recommendations should be sought. [Pg.628]

The plan of this chapter is the following. Section II gives a summary of the phenomenology of irreversible processes and set up the stage for the results of nonequilibrium statistical mechanics to follow. In Section III, it is explained that time asymmetry is compatible with microreversibility. In Section IV, the concept of Pollicott-Ruelle resonance is presented and shown to break the time-reversal symmetry in the statistical description of the time evolution of nonequilibrium relaxation toward the state of thermodynamic equilibrium. This concept is applied in Section V to the construction of the hydrodynamic modes of diffusion at the microscopic level of description in the phase space of Newton s equations. This framework allows us to derive ab initio entropy production as shown in Section VI. In Section VII, the concept of Pollicott-Ruelle resonance is also used to obtain the different transport coefficients, as well as the rates of various kinetic processes in the framework of the escape-rate theory. The time asymmetry in the dynamical randomness of nonequilibrium systems and the fluctuation theorem for the currents are presented in Section VIII. Conclusions and perspectives in biology are discussed in Section IX. [Pg.85]

From the primary calibration curve based on polystyrene standards and the Mark-Houwink constants for polystyrene (K,a) a universal calibration curve (Z vs. v), based on hydrodynamic volume is constructed. Z is calculated from... [Pg.285]

The rotating disc electrode is constructed from a solid material, usually glassy carbon, platinum or gold. It is rotated at constant speed to maintain the hydrodynamic characteristics of the electrode-solution interface. The counter electrode and reference electrode are both stationary. A slow linear potential sweep is applied and the current response registered. Both oxidation and reduction processes can be examined. The curve of current response versus electrode potential is equivalent to a polarographic wave. The plateau current is proportional to substrate concentration and also depends on the rotation speed, which governs the substrate mass transport coefficient. The current-voltage response for a reversible process follows Equation 1.17. For an irreversible process this follows Equation 1.18 where the mass transfer coefficient is proportional to the square root of the disc rotation speed. [Pg.18]

A phenomenogical expression for the hydrodynamic force F may be constructed by assuming that this force is linear in the flux velocities and in the strength of any applied flow field. We consider a system that is subjected to a macroscopic flow field v(r) characterized by a spatially homogeneous macroscopic velocity gradient Vv. We assume that Fa vanishes for all a = 1in the equilibrium state, where the flux velocities and the macroscopic... [Pg.84]

Explosive Bonding, Mechanism of. An aero-hydrodynamic analogy is used to construct a description of the formation of wavy interfaces during expl bonding, which is described by J.T. Kowalick D.R. Hay in Metallurgical Transactions, Vol 2, July 1971, pp 1953-58... [Pg.268]

The Fokker-Planck method was set forth in a series of papers by Kirkwood and collaborators.3 After taking into account a certain error in the original formulation of this method,4 the theory may be regarded as complete, in the sense that it provides a well-defined method of calculation. (There are reasons, however, for questioning the correctness of the model, i.e., point sources of friction in a hydrodynamic continuum, for which the theory was constructed. These reasons will be discussed in another place.)... [Pg.326]

The goal of this chapter is to describe the application of hydrodynamic electrodes to the study of electrode kinetics and the kinetics of electrode and coupled homogeneous reactions. In order to do this, it is important to describe first the mass transport and how to fulfil experimentally the conditions described by the mass transport equations, i.e. electrode construction and operation. [Pg.356]

Detailed expositions of the practical use of hydrodynamic electrodes can be found in various references, e.g. refs. 95—97. A commonly heard criticism of hydrodynamic electrodes is that they, and often the associated flow systems, are difficult to construct. We do not believe the difficulty to be so great and if judicious care is taken, it is perfectly possible to make the electrodes in most research laboratories. [Pg.387]

Certain criteria have to be met in the construction of hydrodynamic electrodes, such that the laminar flow pattern, which is used in the derivation of the theoretical equations, is conformed to. Thus edge effects, which are due to the fact that electrode and surrounding mantle are not of infinite size and which are also dependent on cell dimensions, must be minimised. The shape of the electrode and mantle is important the surfaces must be smooth and there must be no discontinuities or electrolyte penetration at the electrode/mantle junction. [Pg.389]


See other pages where Hydrodynamic construction is mentioned: [Pg.427]    [Pg.427]    [Pg.494]    [Pg.88]    [Pg.19]    [Pg.386]    [Pg.591]    [Pg.203]    [Pg.91]    [Pg.25]    [Pg.37]    [Pg.26]    [Pg.134]    [Pg.69]    [Pg.180]    [Pg.96]    [Pg.89]    [Pg.93]    [Pg.93]    [Pg.108]    [Pg.150]    [Pg.238]    [Pg.180]    [Pg.88]    [Pg.62]    [Pg.175]    [Pg.494]    [Pg.150]    [Pg.105]    [Pg.603]    [Pg.389]   
See also in sourсe #XX -- [ Pg.389 ]




SEARCH



© 2024 chempedia.info