Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons cobalt catalysts

The cobalt catalyst can be introduced into the reactor in any convenient form, such as the hydrocarbon-soluble cobalt naphthenate [61789-51 -3] as it is converted in the reaction to dicobalt octacarbonyl [15226-74-17, Co2(CO)g, the precursor to cobalt hydrocarbonyl [16842-03-8] HCo(CO)4, the active catalyst species. Some of the methods used to recover cobalt values for reuse are (11) conversion to an inorganic salt soluble ia water conversion to an organic salt soluble ia water or an organic solvent treatment with aqueous acid or alkah to recover part or all of the HCo(CO)4 ia the aqueous phase and conversion to metallic cobalt by thermal or chemical means. [Pg.458]

A thkd method utilizes cooxidation of an organic promoter with manganese or cobalt-ion catalysis. A process using methyl ethyl ketone (248,252,265—270) was commercialized by Mobil but discontinued in 1973 (263,264). Other promoters include acetaldehyde (248,271—273), paraldehyde (248,274), various hydrocarbons such as butane (270,275), and others. Other types of reported activators include peracetic acid (276) and ozone (277), and very high concentrations of cobalt catalyst (2,248,278). [Pg.344]

Reactions. The most important commercial reaction of cyclohexane is its oxidation (ia Hquid phase) with air ia the presence of soluble cobalt catalyst or boric acid to produce cyclohexanol and cyclohexanone (see Hydrocarbon oxidation Cyclohexanoland cyclohexanone). Cyclohexanol is dehydrogenated with 2iac or copper catalysts to cyclohexanone which is used to manufacture caprolactam (qv). [Pg.407]

The basic process usually consists of a large reaction vessel in which air is bubbled through pressuri2ed hot Hquid toluene containing a soluble cobalt catalyst as well as the reaction products, a system to recover hydrocarbons from the reactor vent gases, and a purification system for the ben2oic acid product. [Pg.53]

Conventional Transportation Fuels. Synthesis gas produced from coal gasification or from natural gas by partial oxidation or steam reforming can be converted into a variety of transportation fuels, such as gasoline, aviation turbine fuel (see Aviation and other gas turbine fuels), and diesel fuel. A widely known process used for this appHcation is the Eischer-Tropsch process which converts synthesis gas into largely aHphatic hydrocarbons over an iron or cobalt catalyst. The process was operated successfully in Germany during World War II and is being used commercially at the Sasol plants in South Africa. [Pg.277]

Catalytic reduction of thiophenes over cobalt catalysts leads to thiolane derivatives, or hydrocarbons. " Noncatalytic reductions of thiophenes by sodium or lithium in liquid ammonia leads, via the isomeric dihydrothiophenes, to complete destructions of the ring system, ultimately giving butenethiols and olefins. " Exhaustive chlorination of thiophene in the presence of iodine yields 2,2,3,4,5,5,-hexachloro-3-thiolene, Pyrolysis of thiophene at 850°C gives a... [Pg.104]

Huang, X. W., Elbashir N. O., and Roberts, C. B. 2004. Supercritical solvent effects on hydrocarbon product distributions from Fischer-Tropsch synthesis over an alumina-supported cobalt catalyst. Industrial Engineering Chemistry Research 43 6369-81. [Pg.29]

Although the FTS is considered a carbon in-sensitive reaction,30 deactivation of the cobalt active phase by carbon deposition during FTS has been widely postulated.31-38 This mechanism, however, is hard to prove during realistic synthesis conditions due to the presence of heavy hydrocarbon wax product and the potential spillover and buildup of inert carbon on the catalyst support. Also, studies on supported cobalt catalysts have been conducted that suggest deactivation by pore plugging of narrow catalyst pores by the heavy (> 40) wax product.39,40 Very often, regeneration treatments that remove these carbonaceous phases from the catalyst result in reactivation of the catalyst.32 Many of the companies with experience in cobalt-based FTS research report that these catalysts are negatively influenced by carbon (Table 4.1). [Pg.52]

Van Steen11 and Schulz et al.24,25 have presented a detailed analysis of FT products obtained on iron and cobalt catalysts that revealed an exponential decrease of branching with increasing carbon number, as demonstrated in Figure 11.8. At elevated carbon numbers the fractions of branched hydrocarbons approach a constant value. [Pg.207]

Sarup, B., and Wojciechowski, B.W. 1989. Studies of the Fischer-Tropsch synthesis on a cobalt catalyst. II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons. Can. J. Chem. Eng. 67 62-74. [Pg.265]

Lapidus, A., Krylova, A., Kazanskii, V., Borovkov, V., and Zaitsev, A. 1991. Hydrocarbon synthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts. Part I. Physico-chemical properties of 10% cobalt/alumina and 10% cobalt/ silica. Appl. Catal. 73 65-81. [Pg.267]

The product distribution frcm the Fischer-Tropsch reaction on 5 is shown in Table I. It is similar but not identical to that obtained over other cobalt catalysts (18-21,48, 49). The relatively low amount of methane production (73 mol T when compared with other metals and the abnormally low amount of ethane are typical (6). The distribution of hydrocarbons over other cobalt catalysts has been found to fit the Schulz-Flory equation [indicative of a polymerization-type process (6)]. The Schulz-Flory equation in logarithmic form is... [Pg.180]

These adducts are more active than the iron ones in the conversion of syngas. At 250°C, a higher yield of methane is observed (Table U) and carbon dioxide is produced in smaller amounts. Inspection of Table 5 summarizing the influence of the H2/CO ratio on products selectivity also indicates a higher production of saturated hydrocarbons. This behavior is typical for cobalt catalysts in F-T synthesis (j2,25). The chain-length distribution is similar to that observed for catalysts derived... [Pg.195]

X. Huang, N. O. Elbashir and C. B. Roberts, Supercritical Solvent Effects on Hydrocarbon Product Distributions from Fischer-Tropsch synthesis over an Alumina-Supported Cobalt Catalyst, Ind. Eng. Chem. Res., 2004, 43, 6369-6381. [Pg.30]

The hydroformylation of alkenes was accidentally discovered by Roelen while he was studying the Fischer-Tropsch reaction (syn-gas conversion to liquid fuels) with a heterogeneous cobalt catalyst in the late thirties. In a mechanistic experiment Roelen studied whether alkenes were intermediates in the "Aufbau" process of syn-gas (from coal, Germany 1938) to fuel. He found that alkenes were converted to aldehydes or alcohols containing one more carbon atom. It took more than a decade before the reaction was taken further, but now it was the conversion of petrochemical hydrocarbons into oxygenates that was desired. It was discovered that the reaction was not catalysed by the supported cobalt but in fact by HCo(CO)4 which was formed in the liquid state. [Pg.126]

Continuing interest in cobalt catalysts used in the Fischer-Tropsch synthesis has led to the proposal of new methods of catalyst preparation that could determine the selectivity of the catalysts obtained. In this context, a highly selective material to produce C5+ hydrocarbons using a plasma-based method and carbonyl precursors has been prepared [147]. [Pg.332]

Prewar Development of Synthesis Operation in Germany. The production of significant quantities of liquid hydrocarbons from synthesis gas over a cobalt catalyst was first reported by Fischer and Tropsch (6) in 1926. In 1932 a catalyst, useful for commercial operations, was described by Fischer and Koch (4), and in 1935 Ruhrchemie built the first full scale synthesis plant, which operated, at atmospheric pressure. In 1936, the process was modified by the work of Fischer and Pichler (5) to operate at. 5 to 15... [Pg.125]

The oxo reaction (31) is carried out in the liquid phase at high pressure using a cobalt catalyst. A mixture of aldehyde isomers is always produced, each isomer being one carbon number higher than the starting olefin. As a group the oxygenated products of the hydrocarbon synthesis (Fischer-Tropsch) process and the oxo process are primary compounds and thus (except, of course, the methyl and ethyl derivatives) differ fundamentally from the products based on alcohols made by the hydration of olefins, which are always secondary or tertiary in structure. [Pg.296]

Robert B. Anderson. Iron catalysts apparently do not isomerize hydrocarbons however, there is little experimental evidence besides the products of the Fischer-Tropsch synthesis. In hydrocracking of paraffins on nickel and cobalt catalysts the isomerization does not occur. [Pg.47]

Syndiotactic 1.2 polybutadiene has also been made by Longiave and Castelli (49) using an anionic cobalt catalyst made from oxygenated aluminum compounds. Less amounts of 1.2-structure were found in polymerizations in hydrocarbon media. Alkyllithium produced only 6.8% 1.2-structure with the remainder being 1.4 cis and trans. [Pg.366]


See other pages where Hydrocarbons cobalt catalysts is mentioned: [Pg.164]    [Pg.164]    [Pg.79]    [Pg.52]    [Pg.1115]    [Pg.125]    [Pg.537]    [Pg.323]    [Pg.324]    [Pg.74]    [Pg.27]    [Pg.33]    [Pg.74]    [Pg.120]    [Pg.148]    [Pg.200]    [Pg.244]    [Pg.199]    [Pg.125]    [Pg.27]    [Pg.340]    [Pg.126]    [Pg.128]    [Pg.148]    [Pg.100]    [Pg.774]    [Pg.79]    [Pg.29]    [Pg.319]   
See also in sourсe #XX -- [ Pg.384 ]

See also in sourсe #XX -- [ Pg.384 ]

See also in sourсe #XX -- [ Pg.6 , Pg.384 ]




SEARCH



Cobalt catalyst

Cobalt catalysts catalyst

Cobalt hydrocarbon synthesis catalysts

© 2024 chempedia.info