Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon Solvent Producers

Exxon Chemical and Shell Chemical are the two largest suppliers of aliphatic and aromatic hydrocarbons. Exxon offers catalytically synthesized isoparaffi-nic solvents under the tradename of Isopar, a family of dearomatized aliphatic hydrocarbon solvents under the trademark of Exxsol, while the tradename Norpar signifies three grades of high content normal paraffinic solvents with [Pg.232]


Tetrachloroethane (TeCA) was the first chlorinated hydrocarbon solvent produced in large quantities before World War I [371]. It was used as a solvent for cellulose acetate, fat, waxes, greases, rubber, and sulfur. In a few cases, TeCA is used as a carrier or reaction solvent in manufacturing processes for other chemicals and as an analytical reagent for polymers [371]. TeCA was largely replaced by less toxic solvents after 1945. TeCA release in the United States varied from 44,000 pounds in 1988 to 66,000 pounds in 1991 [372]. [Pg.385]

Polyisoprenes produced by lithium or lithium alkyls in bulk or in hydrocarbon solvents produce a polymer which is of the order of 90% or more m-1,4. In the case of butadiene, lithium again gives the highest 1,4 content of any of the alkali metals but here the effect on the cis content is very much less. [Pg.113]

The other alkali metals or their alkyls, in bulk or in hydrocarbon solvents, produce polyisoprenes or polybutadienes having a high 3,4 (1,2) content ( 50%). The 1,4 fraction is usually greater than 90% trans. [Pg.113]

Anhydrous Mgl2 is used in a process for producing organometaUic and organobimetaUic compositions, which are important in the preparation of pharmaceutical and special chemicals. An organic haUde, an alkaU metal, and magnesium haUde react in a Hquid hydrocarbon solvent (66). [Pg.351]

Concretes. Concretes are produced by extraction of flowers, leaves, or roots, usually with hydrocarbon solvents. After removal of the solvent by distillation, the concrete is obtained as a thick, waxy residue. Such materials are used in some fine fragrances, but the waxes they contain can give rise to solubihty problems. Eor this reason, concretes are often dissolved in alcohol to make tinctures, or in other low odor diluents. Production of concretes, especially flower concretes, usually takes place where the botanicals are grown since the odors of such materials deteriorate rapidly after harvesting. [Pg.76]

KTB and KTA are superior to alkaU metal hydrides for deprotonation reactions because of the good solubiUties, and because no hydrogen is produced or oil residue left upon reaction. Furthermore, reactions of KTA and KTB can be performed in hydrocarbon solvents as sometimes requited for mild and nonpolar reaction conditions. Potassium alkoxides are used in large quantities for addition, esterification, transesterification, isomerization, and alkoxylation reactions. [Pg.519]

Printing Inks. Printing ink preparation is similar to many coating systems. The resin is dissolved in the solvent, followed by pigment dispersion to produce the ink. In most printing operations, the solvent must evaporate fast for best production speed. Alcohol—hydrocarbon solvent combinations are used with polyamide resins for some printing processes (see Inks). [Pg.280]

Process Raw Material. Industrial solvents are raw materials in some production processes. Eor example, only a small proportion of acetone is used as a solvent, most is used in producing methyl methacrylate and bisphenol A. Alcohols are used in the manufacture of esters and glycol ethers. Diethylenetriamine is also used in the manufacture of curing agents for epoxy resins. Traditionally, chlorinated hydrocarbon solvents have been the starting materials for duorinated hydrocarbon production. [Pg.280]

Citral reacts in an aldol condensation using excess acetone and a basic catalyst, usually sodium hydroxide. The excess acetone can be recovered for recycle. The resulting intermediate pseudoionone [141-10-6] (83) after cyclization with phosphoric acid gives predominantly a-ionone [127-41 -3] (84), which is the isomer commercially important in flavors and fragrances. A hydrocarbon solvent is generally necessary in order to get high yields. P-Ionone [14901-07-6] (85) is the predominant isomer if sulfuric acid is used as the catalyst but lower temperature than that for cyclization to a-ionone is required. y-Ionone [79-6-5] (86) is also produced. [Pg.424]

Metalation. Benzene reacts with alkaH metal derivatives such as methyl or ethyUithium ia hydrocarbon solvents to produce phenyUithium [591 -51 -5], CgH Li, and methane or ethane. Chloro-, bromo-, or iodobenzene will react with magnesium metal ia ethereal solvents to produce phenyHnagnesium chloride [100-59-4], C H MgCl, bromide, oriodide (Grignard reagents) (32). [Pg.40]

Properties. HydroxyethjIceUulose [9004-62-0] (HEC), is a nonionic polymer. Low hydroxyethyl substitutions (MS = 0.05-0.5) yield products that are soluble only in aqueous alkali. Higher substitutions (MS > 1.5) produce water-soluble HEC. The bulk of commercial HEC falls into the latter category. Water-soluble HEC is widely used because of its broad compatibiUty with cations and the lack of a solution gel or precipitation point in water up to the boiling point. The MS of commercial HEC varies from about 1.8 to 3.5. The products are soluble in hot and cold water but insoluble in hydrocarbon solvents. HEC swells or becomes pardy to mosdy soluble in select polar solvents, usually those that are miscible with water. [Pg.274]

Chlorination of various hydrocarbon feedstocks produces many usehil chlorinated solvents, intermediates, and chemical products. The chlorinated derivatives provide a primary method of upgrading the value of industrial chlorine. The principal chlorinated hydrocarbons produced industrially include chloromethane (methyl chloride), dichloromethane (methylene chloride), trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride), chloroethene (vinyl chloride monomer, VCM), 1,1-dichloroethene (vinylidene chloride), 1,1,2-trichloroethene (trichloroethylene), 1,1,2,2-tetrachloroethene (perchloroethylene), mono- and dichloroben2enes, 1,1,1-trichloroethane (methyl chloroform), 1,1,2-trichloroethane, and 1,2-dichloroethane (ethylene dichloride [540-59-0], EDC). [Pg.506]

Methylene chloride is one of the more stable of the chlorinated hydrocarbon solvents. Its initial thermal degradation temperature is 120°C in dry air (1). This temperature decreases as the moisture content increases. The reaction produces mainly HCl with trace amounts of phosgene. Decomposition under these conditions can be inhibited by the addition of small quantities (0.0001—1.0%) of phenoHc compounds, eg, phenol, hydroquinone, -cresol, resorcinol, thymol, and 1-naphthol (2). Stabilization may also be effected by the addition of small amounts of amines (3) or a mixture of nitromethane and 1,4-dioxane. The latter diminishes attack on aluminum and inhibits kon-catalyzed reactions of methylene chloride (4). The addition of small amounts of epoxides can also inhibit aluminum reactions catalyzed by iron (5). On prolonged contact with water, methylene chloride hydrolyzes very slowly, forming HCl as the primary product. On prolonged heating with water in a sealed vessel at 140—170°C, methylene chloride yields formaldehyde and hydrochloric acid as shown by the following equation (6). [Pg.519]

EPM and EPDM mbbers are produced in continuous processes. Most widely used are solution processes, in which the polymer produced is in the dissolved state in a hydrocarbon solvent (eg, hexane). These processes can be grouped into those in which the reactor is completely filled with the Hquid phase, and those in which the reactor contents consist pardy of gas and pardy of a Hquid phase. In the first case the heat of reaction, ca 2500 kJ (598 kcal)/kg EPDM, is removed by means of cooling systems, either external cooling of the reactor wall or deep-cooling of the reactor feed. In the second case the evaporation heat from unreacted monomers also removes most of the heat of reaction. In other processes using Hquid propylene as a dispersing agent, the polymer is present in the reactor as a suspension. In this case the heat of polymerisation is removed mainly by monomer evaporation. [Pg.503]

Ah these polymerizations proceed only in the absence of oxygen or water, which react with the highly reactive propagating species. Polymerization is usuahy carried out in an inert, hydrocarbon solvent and under a nitrogen blanket. Under these conditions, polymers with narrow molecular-weight distributions and precise molecular weights can be produced in stoichiometric amounts. [Pg.15]

Solvent wiping. Rubbers tend to swell by application of solvents and the mechanical interlocking of the adhesive is favored. Although chlorinated hydrocarbon solvents are the most effective, they are toxic and cannot be used toluene and ketones are currently the most common solvents. The treatment with solvents is effective in the removal of processing oils and plasticizers in vulcanized mbbers, but zinc stearate is not completely removed and antiozonant wax gradually migrates to the mbber/polyurethane adhesive interface. Table 27.1 shows the moderate increase in adhesion produced in SBR by MEK wiping. [Pg.762]

Compositions of a N,N-dialkylamide of a fatty acid in a hydrocarbon solvent and a mutual oil-water solvent are useful for the prevention of sludge formation or emulsion formation during the drilling or workover of producing oil wells [1526,1528,1529]. [Pg.342]

Photolysis (2537 A) of A-arylsulphonyldimethyl sulphoximines in aromatic hydrocarbon solvents did not produce arylsulphonyl nitrenes instead, aryl radicals were generated which arylated the solvent 43>. [Pg.18]

The aluminium-solvent slurry produced by metal atom/solvent co-condensation at — 196°C is so reactive that oxygen is abstracted from the solvent ether as the mixture is allowed to melt. Hydrocarbon solvents are more suitable (but halocarbon solvents would react explosively). [Pg.30]

Actually, a similar approach was used in studying the oxidative addition of methane to an iridium complex. Hydrocarbon solvents would have reacted faster than methane with the photochemically produced unsaturated iridium species, therefore J.K. Hoyano et al chose perfluorinated hexane as being an inert solvent. The elevated pressure was necessary in order to increase the concentration of the methane in the solution sufficiently to shift equilibrium (15) to the right /20/. [Pg.149]

The highly reactive cadmium can be prepared by two different methods. One approach is a room temperature reduction of CdC with lithium naphthalide in THF or DME. The second approach allows the preparation of the reactive metal in a hydrocarbon solvent. First, lithium naphthalide is prepared in benzene addition of this solution to CdC produces a highly reactive cadmium powder. [Pg.234]

The most industrially significant polymerizations involving the cationic chain growth mechanism are the various polymerizations and copolymerizations of isobutylene. In fact, about 500 million pounds of butyl rubber, a copolymer of isobutylene with small amounts of isoprene, are produced annually in the United States via cationic polymerization [126]. The necessity of using toxic chlorinated hydrocarbon solvents such as dichloromethane or methyl chloride as well as the need to conduct these polymerizations at very low temperatures constitute two major drawbacks to the current industrial method for polymerizing isobutylene which may be solved through the use of C02 as the continuous phase. [Pg.130]


See other pages where Hydrocarbon Solvent Producers is mentioned: [Pg.56]    [Pg.497]    [Pg.377]    [Pg.559]    [Pg.60]    [Pg.232]    [Pg.471]    [Pg.56]    [Pg.497]    [Pg.377]    [Pg.559]    [Pg.60]    [Pg.232]    [Pg.471]    [Pg.346]    [Pg.238]    [Pg.467]    [Pg.400]    [Pg.426]    [Pg.249]    [Pg.249]    [Pg.278]    [Pg.498]    [Pg.81]    [Pg.415]    [Pg.469]    [Pg.482]    [Pg.634]    [Pg.972]    [Pg.112]    [Pg.92]    [Pg.273]    [Pg.196]    [Pg.952]    [Pg.86]   


SEARCH



Hydrocarbon solvents

Hydrocarbon-producing

© 2024 chempedia.info