Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon catalysts, performance

Benefits depend upon location. There is reason to beheve that the ratio of hydrocarbon emissions to NO has an influence on the degree of benefit from methanol substitution in reducing the formation of photochemical smog (69). Additionally, continued testing on methanol vehicles, particularly on vehicles which have accumulated a considerable number of miles, may show that some of the assumptions made in the Carnegie Mellon assessment are not vahd. Air quaUty benefits of methanol also depend on good catalyst performance, especially in controlling formaldehyde, over the entire useful life of the vehicle. [Pg.434]

Catalysts in this service can deactivate by several different mechanisms, but deactivation is ordinarily and primarily the result of deposition of carbonaceous materials onto the catalyst surface during hydrocarbon charge-stock processing at elevated temperature. This deposit of highly dehydrogenated polymers or polynuclear-condensed ring aromatics is called coke. The deposition of coke on the catalyst results in substantial deterioration in catalyst performance. The catalyst activity, or its abiUty to convert reactants, is adversely affected by this coke deposition, and the catalyst is referred to as spent. The coke deposits on spent reforming catalyst may exceed 20 wt %. [Pg.222]

In general, the following steps are used to ensure optimum regeneration and catalyst performance recovery alow temperature first pass to remove low boiling point hydrocarbons and other volatile matter, an initial combustion step to remove a portion of the sulfur and carbon, and a final combustion step to remove the remaining carbon to the target level. [Pg.225]

Catalyst Function. Automobile exhaust catalysts are perfect examples of materials that accelerate a chemical reaction but are not consumed. Reactions are completed on the catalyst surface and the products leave. Thus the catalyst performs its function over and over again. The catalyst also permits reactions to occur at considerably lower temperatures. For instance, CO reacts with oxygen above 700°C at a substantial rate. An automobile exhaust catalyst enables the reaction to occur at a temperature of about 250°C and at a much faster rate and in a smaller reactor volume. This is also the case for the combustion of hydrocarbons. [Pg.487]

Design considerations and costs of the catalyst, hardware, and a fume control system are direcdy proportional to the oven exhaust volume. The size of the catalyst bed often ranges from 1.0 m at 0°C and 101 kPa per 1000 m /min of exhaust, to 2 m for 1000 m /min of exhaust. Catalyst performance at a number of can plant installations has been enhanced by proper maintenance. Annual analytical measurements show reduction of solvent hydrocarbons to be in excess of 90% for 3—6 years, the equivalent of 12,000 to 30,000 operating hours. When propane was the only available fuel, the catalyst cost was recovered by fuel savings (vs thermal incineration prior to the catalyst retrofit) in two to three months. In numerous cases the fuel savings paid for the catalyst in 6 to 12 months. [Pg.515]

The final authority on the durability of catalysts is performance in road vehicles. Such data have been rapidly accumulated by the various automobile manufacturers in recent months. This data takes into consideration all the accidents of everyday usage, serving to test how much abuse the catalyst can withstand and still perform its duty. Experience has shown that fresh oxidation and reduction catalysts by a large variety of formulations from many manufacturers would indeed perform their duty. Many oxidation catalysts perform well enough at 25,000 accumulated miles to satisfy the requirement of 0.41 g hydrocarbon/mile and 3.4 g CO/mile, but few would perform well enough at 50,000 miles without maintenance and adjustment of the engine. Many such vehicle endurance tests have to be terminated because of malfunction of the engine or the auxiliary equipment. [Pg.112]

During the cracking process, carbon deposits or coke build up on the spent catalyst particles. These deposits can deactivate the catalyst performance and must be removed. This is typically accomplished in two stages. First, the catalyst collected at the bottom of the reactor is steam stripped to remove residual hydrocarbon. The stripped catalyst then passes into the regenerator and is heated with air to temperatures as high as 1,100°F to 1,200°F (539.3°C to 648.9°C). At these temperatures, coke bums off of the catalyst making it ready for reuse within the FCC unit. See FIGURE 2-5. [Pg.15]

Methylcyclopentadienyl manganese tricarbonyl (MMT) is an additive in many commercial unleaded gasolines, and thus its potential effect on catalyst performance is an important consideration. It was reported by Faggan et al. 8) that MMT at a recommended level of 0.125 g Mn/gal shows no adverse effect on emissions, when compared to unleaded gasoline, in tests on cars operated on the 50,000-mile EPA certification schedule. These findings have been confirmed by a number of unpublished test reports from several industrial laboratories. In fact, it is indicated that some of the manganese deposits can aid catalytically in the removal of CO, and possibly to some extent also of hydrocarbons. The consequence of such a catalytic effect of Mn has still to be explored. [Pg.351]

Automotive emission control is a major catalyst market segment. These catalysts perform three functions (1) oxidize carbon monoxide to carbon dioxide (2) oxidize hydrocarbons to carbon dioxide and water and (3) reduce nitrogen oxides to nitrogen. The oxidation reactions use platinum and palladium as the active metal. Rhodium is the metal of choice for the reduction reaction. These three-way catalysts meet the current standards of 0.41 g hydrocarbon per mile, 3.4 g carbon monoxide per mile, and 0.4 g nitrogen oxides per mile. [Pg.95]

Recently Milczak et al.[57] have reported the nitration of o-xylene using 100% nitric acid over silica supported metal oxide solid acid catalysts with high yields (up to 90 %) but low selectivity to 4-o-NX (40-57 %). Choudary et a/. 5X 591 performed the nitration of o-xylene and other aromatic hydrocarbons by azeotropic removal of water over modified clay catalysts achieving low yields of 4-o-NX and a selectivity of 52%. Better results were obtained when HBeta zeolite was used as catalyst, performing the reaction in dichloromethane at reflux temperature.[60] Conversions of 40 % and maximum selectivity 68 % of 4-o-NX were obtained. Similar conversions and higher selectivities for 4-o-NX (65-75 %) were reported by Rao et al M 1 using a nanocrystaUine HBeta sample and working at 90 °C in the absence of solvent. [Pg.115]

During induction, catalyst activity and selectivities to aromatics and propene increase steadily. Improvement of catalyst performance is due to increase in Ga dispersion and formation of dispersed Ga species (Gao) which are efficient for the heterolytic recombinative release of hydrogen [18,191. The Ga/H-MFI catalyst then reaches its optimal aromatisation performance (stabilisation). Ci to C3 hydrocarbons productions are at their lowest. The gallium dispersion and the chemical distribution of Ga are optimum and balance the acid function of the zeolite. Reversible deactivation during induction and stabilisation of the catalyst is due to site coverage and limited pore blockage by coke deposition. [Pg.189]

In many processes of interest to the hydrocarbon processing industry the size and shape of the catalyst has been chosen as a compromise between catalyst effectiveness and pressure drop. Hence, with effectiveness factors for the main reaction somewhat below 1, intraparticle pore diffusion is generally a factor to be reckoned with. Its effect is not easily quantified since the processing of a practical feedstock involves the conversion of a large variety of molecules with widely different reaction rates and therefore the translation of catalyst performance data obtained with crushed particles to that of the actual catalyst may be difficult and of questionable validity. [Pg.23]

In short, catalytic oxidation of hydrocarbons is a structure-sensitive reaction, and its mechanism is strongly dependent on the type of catalyst and on process conditions. This means that the morphology of the active phase will affect the catalyst activity, and hence the preparation procedure will have a strong influence on catalyst performance. [Pg.159]

The pore diameters of MFI-type zeolites are comparable to the size of many commercially important molecules, such as aromatics or linear or branched hydrocarbons [1]. Thus, the study of the difiusion of reactive molecules in the channel system of zeolite catalysts is of considerable interest for the understanding of the catalyst performance. A variety of methods has been developed and applied to the measurement of diffii-sion coefficients, amongst others gravimetric techniques [2], neutron scattering [3], NMR [4] and Frequency Response [5]. The FTIR technique offers the possibility to study sorption and sorption kinetics under conditions close to those of catalytic experiments. By the use of an IR microscope, single crystals have become accessible to the FTIR technique. [Pg.131]


See other pages where Hydrocarbon catalysts, performance is mentioned: [Pg.222]    [Pg.226]    [Pg.459]    [Pg.459]    [Pg.514]    [Pg.142]    [Pg.33]    [Pg.242]    [Pg.250]    [Pg.245]    [Pg.59]    [Pg.63]    [Pg.90]    [Pg.459]    [Pg.459]    [Pg.514]    [Pg.231]    [Pg.53]    [Pg.340]    [Pg.224]    [Pg.357]    [Pg.242]    [Pg.434]    [Pg.257]    [Pg.201]    [Pg.325]    [Pg.99]    [Pg.109]    [Pg.180]    [Pg.352]    [Pg.52]   


SEARCH



Catalyst performance

Hydrocarbon catalysts, performance testing

© 2024 chempedia.info