Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversible hydrides

Complete control of the diastereoselectivity of the synthesis of 1,3-diols has been achieved by reagent selection in a one-pot tandem aldol-reduction sequence (see Scheme l). i Anti-selective method (a) employs titanium(IV) chloride at 5°C, followed by Ti(OPr )4, whereas method (b), using the tetrachloride with a base at -78 °C followed by lithium aluminium hydride, reverses the selectivity. A non-polar solvent is required (e.g. toluene or dichloromethane, not diethyl ether or THF), and at the lower temperature the titanium alkoxide cannot bring about the reduction of the aldol. Tertiary alkoxides also fail, indicating a similarity with the mechanism of Meerwein-Ponndorf reduction. [Pg.13]

The classical Meerwein-Ponndorf-Verley (MPV) process, named after the independent originators, can be illustrated by the reduction of crotonaldehyde (43) by aluminum isopropoxide (44) in isopropyl alcohol (equation 24). Aluminum isopropoxide transfers hydride reversibly to a carbonyl acceptor. Acetone is formed as a volatile side product, which can be removed during reaction. The reaction of equation (24) is forced even further to the right by the use of excess isopropyl alcohol. MPV reactions have been reviewed.In the Oppenauer variant of this reaction an alcohol is oxidized to a ketone, and acetone is used as hydride acceptor in the presence of a strong base like r-butoxide. This reaction was originally developed for the selective oxidation of sterols. The synthetic aspects of this procedure have also been reviewed. ... [Pg.88]

A prototype of a CamCorder equipped with a PEM fuel cell system made of a stack of 15 bipolar plates, as shown in Figure 8-15, was developed to deliver 9 W output power at 8 V. The stack described above was integrated into a housing which also includes the metal hydride reversible hydrogen storage, pressure control, fans, and electronics. This system replaces the Li-ion battery pack normally used as an energy source in the camera. [Pg.159]

Sodium hydride Reversed nucleosides Amines from sulfonic acid esters Preferential 0-deacylation... [Pg.99]

The important application for the ternary transition metal hydrides (reversible hydrogen storage), their relative insensitivity toward air, and the huge combinatorial potential of intermetallic compounds make them the by far most investigated subclass within the metal hydrides. From the vast number of AgM -H systems, only some prominent representatives can be discussed in detail. Table III gives an overview of some hydride phases of important subclasses of AgM intermetalUc compounds. [Pg.248]

The higjily water-soluble dienophiles 2.4f and2.4g have been synthesised as outlined in Scheme 2.5. Both compounds were prepared from p-(bromomethyl)benzaldehyde (2.8) which was synthesised by reducing p-(bromomethyl)benzonitrile (2.7) with diisobutyl aluminium hydride following a literature procedure2.4f was obtained in two steps by conversion of 2.8 to the corresponding sodium sulfonate (2.9), followed by an aldol reaction with 2-acetylpyridine. In the preparation of 2.4g the sequence of steps had to be reversed Here, the aldol condensation of 2.8 with 2-acetylpyridine was followed by nucleophilic substitution of the bromide of 2.10 by trimethylamine. Attempts to prepare 2.4f from 2.10 by treatment with sodium sulfite failed, due to decomposition of 2.10 under the conditions required for the substitution by sulfite anion. [Pg.50]

Another reaction in the last step is the syn elimination ofhydrogen with Pd as H—Pd—X, which takes place with alkyl Pd complexes, and the Pd hydride and an alkene are formed. The insertion of an alkene into Pd hydride and the elimination of, (3-hydrogen are reversible steps. The elimination of, 3-hydrogen generates the alkene, and both the hydrogen and the alkene coordinate to Pd, increasing the coordination number of Pd by one. Therefore, the / -elimination requires coordinative unsaturation on Pd complexes. The, 3-hydrogen eliminated should be syn to Pd. [Pg.9]

The reverse reaction also occurs m living systems NADH reduces acetaldehyde to ethanol m the presence of alcohol dehydrogenase In this process NADH serves as a hydride donor and is oxidized to NAD" while acetaldehyde is reduced... [Pg.646]

Hydrazinium salts, N2H5 X, are acids in anhydrous hydrazine, metallic hydrazides, N2H, are bases. Neutralization in this solvent system involves the hydrazinium and hydrazide ions and is the reverse of equation 7. Metal hydrazides, formally analogous to the metal amides, are prepared from anhydrous hydrazine and the metals as well as from metal amides, alkyls, or hydrides. (The term hydrazide is also used for organic compounds where the carboxyUc acid OH is substituted with a N2H2.) Sodium hydrazide [13598-47-5] is made from sodium or, more safely, from sodium amide (14) ... [Pg.275]

Storage as Hydrides. The discovery of metal compounds that reversibly absorb hydrogen is relatively recent. In the 1970s, the AB and AB family of alloys, which reversibly absorb hydrogen at room temperature and low pressure, were identified (205). Both A and B are metals. As of this writing many such compounds are known LaNi and TiFe are examples. [Pg.429]

The lanthanides can form hydrides (qv) of any composition up to LnH. Lanthanide hydrides can desorb hydrogen reversibly with temperature. Therefore, the lanthanides and some of thek alloys ate good candidates for hydrogen (qv) storage, of which LaNi is probably the most promising (see... [Pg.541]

The reaction is displaced to the right by dissociation of sodium hydride and Hberation of hydrogen. This dissociation is favored under vacuum or when the reaction 2one is swept with an inert gas to remove the hydrogen (24,25). In this manner, sodium monoxide substantially free of sodium and sodium hydroxide is produced. In the more compHcated reaction between sodium metal and anhydrous potassium hydroxide, potassium metal and sodium hydroxide are produced in a reversible reaction (42,43) ... [Pg.164]

Copper sulfate, in small amounts, activates the zinc dust by forming zinc—copper couples. Arsenic(III) and antimony(TTT) oxides are used to remove cobalt and nickel they activate the zinc and form intermetaUic compounds such as CoAs (49). Antimony is less toxic than arsenic and its hydride, stibine, is less stable than arsine and does not form as readily. Hydrogen, formed in the purification tanks, may give these hydrides and venting and surveillance is mandatory. The reverse antimony procedure gives a good separation of cadmium and cobalt. [Pg.403]

The metallic monohaHdes zirconium chloride [14989-34-5] ZrCl, and zirconium bromide [31483-18-8] ZrBr, reversibly absorb hydrogen up to a limiting composition of ZrXH (131). These hydrides are less stable than the binary hydride ZrH2, and begin to disproportionate above 400°C to ZrH2 and ZrX in a hydrogen atmosphere (see also Hydrides). [Pg.433]

Complexes 79 show several types of chemical reactions (87CCR229). Nucleophilic addition may proceed at the C2 and S atoms. In excess potassium cyanide, 79 (R = R = R" = R = H) forms mainly the allyl sulfide complex 82 (R = H, Nu = CN) (84JA2901). The reaction of sodium methylate, phenyl-, and 2-thienyllithium with 79 (R = R = r" = R = H) follows the same route. The fragment consisting of three coplanar carbon atoms is described as the allyl system over which the Tr-electron density is delocalized. The sulfur atom may participate in delocalization to some extent. Complex 82 (R = H, Nu = CN) may be proto-nated by hydrochloric acid to yield the product where the 2-cyanothiophene has been converted into 2,3-dihydro-2-cyanothiophene. The initial thiophene complex 79 (R = R = r" = R = H) reacts reversibly with tri-n-butylphosphine followed by the formation of 82 [R = H, Nu = P(n-Bu)3]. Less basic phosphines, such as methyldiphenylphosphine, add with much greater difficulty. The reaction of 79 (r2 = r3 = r4 = r5 = h) with the hydride anion [BH4, HFe(CO)4, HW(CO)J] followed by the formation of 82 (R = Nu, H) has also been studied in detail. When the hydride anion originates from HFe(CO)4, the process is complicated by the formation of side products 83 and 84. The 2-methylthiophene complex 79... [Pg.14]

Another route to the amido complexes originates from [(>j-Tp )W(CO) (PhC=CMe)(OTf)l and benzylamine and yields [(i -Tp )W(CO)(PhC=CMe) (NHCH2Ph)] (96JA6916). The latter can be protonated with tetrafluoroboric acid to give the amine derivative [(> -Tp )W(CO)(PhC=CMe)(NH2CH2Ph)](Bp4), and this process can be reversed by -butyllithium. Hydride abstraction by silver tetrafiuoroborate, molecular iodine, or PhsCPEe leads to the cationic imine derivatives [(> -Tp )W(CO)(PhC=CMe)(HN=CHPh)]". -Butyllithium deproto-nates the product and gives the neutral azavinylidene species [(> -Tp )W(CO) (PhC=CMe)(N=CHPh)]. The latter with silver tetrafiuoroborate forms the cationic nitrile species [(j -Tp )W(CO)(PhC=CMe)(N=CPh)](Bp4). [Pg.187]

In addition to its other properties, interest in the potential use of the vasodilative properties of prostaglandin El, alprostadil ( ), has led to several conceptually different syntheses.For this purpose, the classic Corey process has to be modified by reversing the order of addition of the side chains to allow for convenient removal of the unwanted double bond in the upper side chain. For example, Corey lactone is protected with dihydropyran (acid catalysis), reduced to the lactol with diisobutyaluminum hydride, and then subjected to the usual Wittig reaction to give intermediate This is... [Pg.2]

The intramolecular Michael addition11 of a nucleophilic oxygen to an a,/ -unsaturated ester constitutes an attractive alternative strategy for the synthesis of the pyran nucleus, a strategy that could conceivably be applied to the brevetoxin problem (see Scheme 2). For example, treatment of hydroxy a,/ -unsaturated ester 9 with sodium hydride furnishes an alkoxide ion that induces ring formation by attacking the electrophilic //-carbon of the unsaturated ester moiety. This base-induced intramolecular Michael addition reaction is a reversible process, and it ultimately affords the thermodynamically most stable product 10 (92% yield). [Pg.734]


See other pages where Reversible hydrides is mentioned: [Pg.209]    [Pg.209]    [Pg.621]    [Pg.450]    [Pg.2]    [Pg.845]    [Pg.209]    [Pg.209]    [Pg.621]    [Pg.450]    [Pg.2]    [Pg.845]    [Pg.425]    [Pg.322]    [Pg.380]    [Pg.445]    [Pg.455]    [Pg.117]    [Pg.117]    [Pg.433]    [Pg.561]    [Pg.454]    [Pg.66]    [Pg.387]    [Pg.190]    [Pg.66]    [Pg.314]    [Pg.192]    [Pg.100]    [Pg.11]    [Pg.333]    [Pg.334]    [Pg.120]    [Pg.1270]    [Pg.503]   


SEARCH



Hydride decompositions, reversible

Hydride insertion, reversibility

Palladium hydride, reversible elimination

Reversible Metal Hydride Hydrogen Stores

Reversible carbon hydrides

Reversible hydrides applications

Reversible hydrides borohydrides

Reversible hydrides material properties

© 2024 chempedia.info