Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

HPLC equipment mobile-phase system

THF and methanol employed as organic modifiers of mobile phase provided a considerable difference in selectivity based on the polar interactions between solutes and the organic solvent molecules in the stationary phase. Acidic compounds, phenols and nitroaromatics, were preferentially retained in the THF-based mobile phase, whereas esters and ketones were preferentially retained in the methanol (a hydrogen-bond donor) containing mobile phase. The system presented here seems to be very practical because any laboratory possessing two sets of HPLC equipment and two C j g columns can attempt similar 2D HPLC by simply changing the mobile phase for the two dimensions. [Pg.166]

Bergstrom et al. [63] used HPLC for determination of penicillamine in body fluids. Proteins were precipitated from plasma and hemolyzed blood with trichloroacetic acid and metaphosphoric acid, respectively, and, after centrifugation, the supernatant solution was injected into the HPLC system via a 20-pL loop valve. Urine samples were directly injected after dilution with 0.4 M citric acid. Two columns (5 cm x 0.41 cm and 30 cm x 0.41 cm) packed with Zipax SCX (30 pm) were used as the guard and analytical columns, respectively. The mobile phase (2.5 mL/min) was deoxygenated 0.03 M citric acid-0.01 M Na2HP04 buffer, and use was made of an electrochemical detector equipped with a three-electrode thin-layer cell. The method was selective and sensitive for mercapto-compounds. Recoveries of penicillamine averaged 101% from plasma and 107% from urine, with coefficients of variation equal to 3.68 and 4.25%, respectively. The limits of detection for penicillamine were 0.5 pm and 3 pm in plasma and in urine, respectively. This method is selective and sensitive for sulfhydryl compounds. [Pg.146]

Fogli et al. developed and validated an HPLC method with fluorescence detection for simultaneous routine TDM of anthracyclines and their metabolites.27 They coupled a Waters LC Module I Plus system equipped with a WISP 416 autosampler with a Model 474 scanning fluorescence spectrophotometer. The stationary phase was a Supelcosil LC-CN column (250 x 4.6 mm, 5 /um particle size) with a /iBondapak-CN guard column. The mobile phase consisted of 50mM monobasic sodium phosphate buffer and acetonitrile (65 35 v/v), adjusted to pH 4.0 with phosphoric acid. The flow rate was 1 mL/min. The fluorescence detection was set at excitation wavelengths of 233, 254, and 480 nm and at an emission wavelength of 560 nm. [Pg.302]

In supercritical fluid chromatography (SFC) the mobile phase is a supercritical fluid, such as carbon dioxide [15]. A supercritical fluid can be created either by heating a gas above its critical temperature or compressing a liquid above its critical pressure. Generally, an SFC system typically has chromatographic equipment similar to a HPLC, but uses GC columns. Both GC and LC detectors are used, thus allowing analysis of samples that cannot be vaporized for analysis by GC, yet cannot be detected with the usual LC detectors, to be both separated and detected using SFC. SFC is also in other... [Pg.109]

The instruments for polymer HPLC except for the columns (Section 16.8.1) and for some detectors are in principle the same as for the HPLC of small molecules. Due to sensitivity of particular detectors to the pressure variations (Section 16.9.1) the pumping systems should be equipped with the efficient dampeners to suppress the rest pulsation of pressure and flow rate of mobile phase. In most methods of polymer HPLC, and especially in SEC, the retention volume of sample (fraction) is the parameter of the same importance as the sample concentration. The conventional volumeters— siphons, drop counters, heat pulse counters—do not exhibit necessary robustness and precision [270]. Therefore the timescale is utilized and the eluent flow rate has to be very constant even when rather viscous samples are introduced into column. The problems with the constant eluent flow rate may be caused by the poor resettability of some pumping systems. Therefore, it is advisable to carefully check the actual flow rate after each restarting of instrument and in the course of the long-time experiments. A continuous operation— 24h a day and 7 days a week—is advisable for the high-precision SEC measurements. THE or other eluent is continuously distilled and recycled. [Pg.492]

The HPLC was equipped with a UV-Vis detector (VWD = 210 nm), a water symmetry Cig column, 150 mm x 3.9 mm, 5 p,m. The mobile phase was 25% acetonitrile in 75% 20 mM phosphate buffer (pH 2.8). The flow rate was set at 1.5 mL/min. Equal volumes (25 p,L) of standard and sample solutions were injected into the chromatographic system. Quantification of polysorbate 80 is based on a comparison of the response of oleic acid in sample and that of oleic acid in standard solution [6]. When polysorbate 80 was quantified by GC, the released oleic acid can be detected without derivatization and prepared according to the HPLC method. [Pg.89]

Equipment with different characteristics (e.g., delay volume of an HPLC system) Variations in material and instrument conditions (e.g., in HPLC, mobile phases composition, pH, flow rate of mobile phase)... [Pg.553]

Separation of five compounds (DL, 6-OH-DL, 3-OH-DL, 7V-OH-DL, and 1-pyridine-/V-oxide-DL) was achieved using an Alliance HPLC system (Waters Corp., Milford, CA) equipped with a 2690 model pump, an autoinjector, a Polaris Cl8-A guard column (Varian Inc., Lake Forest, CA), and a Luna Phenyl-Hexyl analytical column (Phenomenex, Inc., Torrance, CA) maintained at 40°C. For robust characterization of each isomeric compound, an online HDX LC-MS method was developed. The composition of regular and deuterated mobile phases is summarized below ... [Pg.299]

Analysis of Tween 80 was performed using a Hewlett Packard 1100 series HPLC equipped with a Sedex 55 Evaporative Light Scattering Detector (ELSD). The mobile phase consisted of 80% acetonitrile and 20% water. Duplicate injections (5 pL) of each sample were evaluated by HPLC. Potassium iodide, used for the 1-D column and 2-D box tracer studies, was analyzed with a continuous flow Isco V4 variable UV wavelength absorbance detector equipped with an EZChrom Chromatography data acquisition system. [Pg.292]

In fermentation samples, owing to the partial overlap of arabinose, xylitol, and arabitol, in the column Aminex HPX-87H, those components were also analyzed using a Sugar-Pak I column (Waters) operating at 90°C in a Merck-Hitachi HPLC system (Merck) equipped with an RI detector (L-7490 Merck). The mobile phase was 50 mg/L of calcium EDTA at a flow rate of 0.5 mL/min. [Pg.1063]

Sample analysis was performed by using an Applied Biosystems (Foster City, CA) API 3000 triple quadrupole mass spectrometer equipped with a TurboIonSpray source and an Agilent 1100 capillary HPLC system (Palo Alto, CA). The capillary HPLC system included a binary capillary pump with an active micro flow rate control system, an online degasser, and a microplate autosampler. The analytical column was a 300 pm I.D.x 150 mm Zorbax C18 Stablebond capillary column (pore size 100 A and particle size 3.5 pm). The injection volume was 5 pL, and a needle ejection rate of 40 pL/min was used. The pLC flow rate was 6 pL/min. In order to minimize dead volume before the column, the autosampler was programmed to bypass the 8 pL sample loop 1.5 min after injection. The mobile phase consisted of (A) 2 mM ammonium acetate (adjusted to pH 3.2 with formic acid) in 10 90 acetonitrile-water, and (B) 2 mM ammonium acetate in 90 10 acetonitrile-water. The percentage of mobile phase B was held at 32 % for the first minute, increased to 80 % over 8 min, and then increased tol00% over the following 1 min. [Pg.85]

Williams et al. used a high performance liquid chromatographic assay method for dipyridamole monitoring in plasma [71]. The HPLC system uses a Waters model 6000 A solvent delivery pump equipped with a U6K injector, a pBondapak C 9 column (30 cm x 39 mm 10 pm), and a Model 440 absorbance detector. The signal from the detector was quantified using a Shimadzu data processor and an Omni-Scribe recorder. A mobile phase flow rate of 1.5 mL/min was produced by a pressure of approximately 102 atm (1500 p.s.i.). The mobile phase was 50 50 mixture of acetonitrile and 0.01 M sodium phosphate in water (adjusted to pH 7). The absorbance reading of dipyridamole in methanol was made at 280 nm. [Pg.270]

Pederson described a specific HPLC method for the determination of dipyridamole in serum [74]. The HPLC system used was a Waters model 600 liquid chromatograph equipped with a U6K injector, a pBondapak Ci8 column (30 cm x 39 mm) (10 pm), and a model 440 dual channel filter absorbance detector in conjunction with a Tarkan W + W 600 recorder. The mobile phase was a 75 25 mixture of methanol and a 0.02 M solution of sodium acetate (adjusted to pH 4 with acetic acid). The solvent flow rate of 2 mL/min was produced by an applied pressure of approximately 2000 p.s.i. Detection of the analyte was made at the UV absorption maximum of 280 nm. [Pg.271]


See other pages where HPLC equipment mobile-phase system is mentioned: [Pg.134]    [Pg.24]    [Pg.650]    [Pg.204]    [Pg.260]    [Pg.192]    [Pg.175]    [Pg.257]    [Pg.510]    [Pg.367]    [Pg.14]    [Pg.64]    [Pg.277]    [Pg.420]    [Pg.423]    [Pg.429]    [Pg.435]    [Pg.27]    [Pg.112]    [Pg.87]    [Pg.22]    [Pg.23]    [Pg.486]    [Pg.595]    [Pg.624]    [Pg.63]    [Pg.411]    [Pg.1045]    [Pg.246]    [Pg.270]    [Pg.271]    [Pg.311]    [Pg.312]    [Pg.86]    [Pg.89]    [Pg.139]    [Pg.178]   
See also in sourсe #XX -- [ Pg.609 ]




SEARCH



Equipment systems

HPLC system

Mobile equipment

Mobile phase systems

Mobile systems

© 2024 chempedia.info