Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

HPLC advantage

This chapter describes the use of HPLC in food, environmental, chemical (polymer, ion chromatography), and life sciences applications. The HPLC advantages, method requirements, and trends of these application areas are summarized with descriptions of the methodologies of key analytes. References for further studies are listed. [Pg.158]

HPLC advantages High-resolution, multi-component quantitative analysis... [Pg.158]

HPLC advantages Amenable to thermally labile, nonvolatile, and polar components Rapid and automated analysis of complex samples Precise and quantitative (with spectral confirmation possible) Quantitative recovery (good sample preparation technique) Sensitive and selective detection (UV, FL, MS) Can tolerate injections of large volumes of aqueous samples (0.5-1 mL)... [Pg.169]

One advantage of an HPLC analysis is that a loop injector often eliminates the need for an internal standard. Why is an internal standard used in this analysis What assumption(s) must we make about the internal standard ... [Pg.589]

These methodologies have been reviewed (22). In both methods, synthesis involves assembly of protected peptide chains, deprotection, purification, and characterization. However, the soHd-phase method, pioneered by Merrifield, dominates the field of peptide chemistry (23). In SPPS, the C-terminal amino acid of the desired peptide is attached to a polymeric soHd support. The addition of amino acids (qv) requires a number of relatively simple steps that are easily automated. Therefore, SPPS contains a number of advantages compared to the solution approach, including fewer solubiUty problems, use of less specialized chemistry, potential for automation, and requirement of relatively less skilled operators (22). Additionally, intermediates are not isolated and purified, and therefore the steps can be carried out more rapidly. Moreover, the SPPS method has been shown to proceed without racemization, whereas in fragment synthesis there is always a potential for racemization. Solution synthesis provides peptides of relatively higher purity however, the addition of hplc methodologies allows for pure peptide products from SPPS as well. [Pg.200]

Gas Chromatography (gc). A principal advantage of gas chromatography has been the faciUty with which it can be combined with mass spectrometry for amino acid identification and confirmation of purity. The gc-mass spectrometry combination offers the advantage of obtaining stmctural information rather than the identification by retention time in hplc. [Pg.284]

Supercritical Fluid Chromatography. Supercritical fluid chromatography (sfc) combines the advantages of gc and hplc in that it allows the use of gc-type detectors when supercritical fluids are used instead of the solvents normally used in hplc. Carbon dioxide, -petane, and ammonia are common supercritical fluids (qv). For example, carbon dioxide (qv) employed at 7.38 MPa (72.9 atm) and 31.3°C has a density of 448 g/mL. [Pg.247]

Immobilization. The abiUty of cyclodextrins to form inclusion complexes selectively with a wide variety of guest molecules or ions is well known (1,2) (see INCLUSION COMPOUNDS). Cyclodextrins immobilized on appropriate supports are used in high performance Hquid chromatography (hplc) to separate optical isomers. Immobilization of cyclodextrin on a soHd support offers several advantages over use as a mobile-phase modifier. For example, as a mobile-phase additive, P-cyclodextrin has a relatively low solubiUty. The cost of y- or a-cyclodextrin is high. Furthermore, when employed in thin-layer chromatography (tic) and hplc, cyclodextrin mobile phases usually produce relatively poor efficiencies. [Pg.97]

In this work the state-of-the-art and perspectives of column characterization and compai ison have been presented and discussed. All information about physico-chemical properties of RP HPLC Cl8 and C8 columns as porosity, average surface area, free silanol concentration, binding ligand density and others, were summarized. The points of views about column classifications, its advantages and disadvantages were discussed. It was shown that Cl8 and C8 HPLC column classification processes do not allow selecting the column with the same or preai range selectivity. [Pg.131]

As a method of research, has been used high-performance liquid chromatography in reversed - phase regime (RP HPLC). The advantage of the present method is the following the additional information about AIST and FAS composition (homologous distribution) simple preparation of samples (dilution of a CS sample of in a mobile phase). [Pg.133]

The recent development and comparative application of modern separation techniques with regard to determination of alkylphosphonic acids and lewisite derivatives have been demonstrated. This report highlights advantages and shortcomings of GC equipped with mass spectrometry detector and HPLC as well as CE with UV-Vis detector. The comparison was made from the sampling point of view and separation/detection ability. The derivatization procedure for GC of main degradation products of nerve agents to determine in water samples was applied. Direct determination of lewisite derivatives by HPLC-UV was shown. Also optimization of indirect determination of alkylphosphonic acids in CE-UV was developed. Finally, the new instrumental development and future trends will be discussed. [Pg.278]

Hyphenation of HPLC with NMR combines the power of sepai ation with a maximum of stiaictural information by NMR. HPLC-NMR has been used in the detection and identification of diaig metabolites in human urine since 1992. The rapid and unambiguous determination of the major metabolites of diaigs without any pretreatment of the investigated fluid represents the main advantage of this approach. Moreover the method is non-destmctive and without the need to use radiolabelled compounds. [Pg.342]

Analogous to HPLC-HRGC, the combination of packed column SEC and capillary column GC can be used for the analysis of complex samples. The advantage of SEC/GC with respect to HPLC/GC is the absence of problems associated with the evaporation of the HPLC mobile phase prior to the GC analysis. [Pg.241]

The type of CSPs used have to fulfil the same requirements (resistance, loadabil-ity) as do classical chiral HPLC separations at preparative level [99], although different particle size silica supports are sometimes needed [10]. Again, to date the polysaccharide-derived CSPs have been the most studied in SMB systems, and a large number of racemic compounds have been successfully resolved in this way [95-98, 100-108]. Nevertheless, some applications can also be found with CSPs derived from polyacrylamides [11], Pirkle-type chiral selectors [10] and cyclodextrin derivatives [109]. A system to evaporate the collected fractions and to recover and recycle solvent is sometimes coupled to the SMB. In this context the application of the technique to gas can be advantageous in some cases because this part of the process can be omitted [109]. [Pg.8]

Supercritical fluid chromatography (SFC) refers to the use of mobile phases at temperatures and pressures above the critical point (supercritical) or just below (sub-critical). SFC shows several features that can be advantageous for its application to large-scale separations [132-135]. One of the most interesting properties of this technique is the low viscosity of the solvents used that, combined with high diffusion coefficients for solutes, leads to a higher efficiency and a shorter analysis time than in HPLC. [Pg.12]

As a matter of fact, the main advantage in comparison with HPLC is the reduction of solvent consumption, which is limited to the organic modifiers, and that will be nonexistent when no modifier is used. Usually, one of the drawbacks of HPLC applied at large scale is that the product must be recovered from dilute solution and the solvent recycled in order to make the process less expensive. In that sense, SFC can be advantageous because it requires fewer manipulations of the sample after the chromatographic process. This facilitates recovery of the products after the separation. Although SFC is usually superior to HPLC with respect to enantioselectivity, efficiency and time of analysis [136], its use is limited to compounds which are soluble in nonpolar solvents (carbon dioxide, CO,). This represents a major drawback, as many of the chemical and pharmaceutical products of interest are relatively polar. [Pg.12]


See other pages where HPLC advantage is mentioned: [Pg.307]    [Pg.169]    [Pg.307]    [Pg.169]    [Pg.585]    [Pg.609]    [Pg.61]    [Pg.49]    [Pg.546]    [Pg.546]    [Pg.226]    [Pg.58]    [Pg.438]    [Pg.109]    [Pg.111]    [Pg.89]    [Pg.469]    [Pg.14]    [Pg.138]    [Pg.349]    [Pg.535]    [Pg.140]    [Pg.364]    [Pg.16]    [Pg.17]    [Pg.126]    [Pg.128]    [Pg.232]    [Pg.232]    [Pg.242]    [Pg.305]    [Pg.324]    [Pg.5]    [Pg.10]    [Pg.14]   
See also in sourсe #XX -- [ Pg.560 ]




SEARCH



Advantages and disadvantages of HPLC

Reversed phase HPLC advantages

Some Advantages of HPLC Over Other Techniques

The advantages of HPLC over other chromatographic techniques

© 2024 chempedia.info