Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homopolymers catalysts

Hexafluoiopiopylene and tetiafluoioethylene aie copolymerized, with trichloiacetyl peroxide as the catalyst, at low temperature (43). Newer catalytic methods, including irradiation, achieve copolymerization at different temperatures (44,45). Aqueous and nonaqueous dispersion polymerizations appear to be the most convenient routes to commercial production (1,46—50). The polymerization conditions are similar to those of TFE homopolymer dispersion polymerization. The copolymer of HFP—TFE is a random copolymer that is, HFP units add to the growing chains at random intervals. The optimal composition of the copolymer requires that the mechanical properties are retained in the usable range and that the melt viscosity is low enough for easy melt processing. [Pg.359]

High density polyethylene (HDPE) is defined by ASTM D1248-84 as a product of ethylene polymerisation with a density of 0.940 g/cm or higher. This range includes both homopolymers of ethylene and its copolymers with small amounts of a-olefins. The first commercial processes for HDPE manufacture were developed in the early 1950s and utilised a variety of transition-metal polymerisation catalysts based on molybdenum (1), chromium (2,3), and titanium (4). Commercial production of HDPE was started in 1956 in the United States by Phillips Petroleum Company and in Europe by Hoechst (5). HDPE is one of the largest volume commodity plastics produced in the world, with a worldwide capacity in 1994 of over 14 x 10 t/yr and a 32% share of the total polyethylene production. [Pg.379]

The number of branches in HDPE resins is low, at most 5 to 10 branches per 1000 carbon atoms in the chain. Even ethylene homopolymers produced with some transition-metal based catalysts are slightly branched they contain 0.5—3 branches per 1000 carbon atoms. Most of these branches are short, methyl, ethyl, and -butyl (6—8), and their presence is often related to traces of a-olefins in ethylene. The branching degree is one of the important stmctural features of HDPE. Along with molecular weight, it influences most physical and mechanical properties of HDPE resins. [Pg.379]

Third-generation high yield supported catalysts are also used in processes in which Hquid monomer is polymerized in continuous stirred tank reactors. The Hypol process (Mitsui Petrochemical), utilizes the same supported catalyst technology as the Spheripol process (133). Rexene has converted the hquid monomer process to the newer high yield catalysts. Shell uses its high yield (SHAC) catalysts to produce homopolymers and random copolymers in the Lippshac process (130). [Pg.416]

Molecular weights of poly(propylene oxide) polymers of greater than 100,000 are prepared from catalysts containing FeCl (40,41). The molecular weight of these polymers is gready increased by the addition of small amounts of organic isocyanates (42). Homopolymers of propylene oxide are also prepared by catalysis using diethylzinc—water (43), diphenylzinc—water (44), and trialkyl aluminum (45,46) systems. [Pg.134]

Catalyst Development. Traditional slurry polypropylene homopolymer processes suffered from formation of excessive amounts of low grade amorphous polymer and catalyst residues. Introduction of catalysts with up to 30-fold higher activity together with better temperature control have almost eliminated these problems (7). Although low reactor volume and available heat-transfer surfaces ultimately limit further productivity increases, these limitations are less restrictive with the introduction of more finely suspended metallocene catalysts and the emergence of industrial gas-phase fluid-bed polymerization processes. [Pg.508]

The Phillips-type catalyst can be used in solution polymerization, slurry polymerization, and gas-phase polymerization to produce both high density polyethylene homopolymers and copolymers with olefins such as 1-butene and 1-hexene. The less crystalline copolymers satisfy needs for materials with more suitable properties for certain uses that require greater toughness and flexibiUty, especially at low temperatures. [Pg.203]

The molecular weight of the polymers is controlled by temperature (for the homopolymer), or by the addition of organic acid anhydrides and acid hahdes (37). Although most of the product is made in the first reactor, the background monomer continues to react in a second reactor which is placed in series with the first. When the reaction is complete, a hindered phenoHc or metal antioxidant is added to improve shelf life and processibiUty. The catalyst is deactivated during steam coagulation, which also removes solvent and unreacted monomer. The cmmbs of water-swoUen product are dried and pressed into bale form. This is the only form in which the mbber is commercially available. The mbber may be converted into a latex form, but this has not found commercial appHcation (38). [Pg.555]

A monomer is a reactive molecule that has at least one functional group (e.g. -OH, -COOH, -NH2, -C=C-). Monomers may add to themselves as in the case of ethylene or may react with other monomers having different functionalities. A monomer initiated or catalyzed with a specific catalyst polymerizes and forms a macromolecule—a polymer. For example, ethylene polymerized in presence of a coordination catalyst produces a linear homopolymer (linear polyethylene) ... [Pg.302]

As an example, an NMR spectrum of a 1,3-dioxolane-/3-propiolactone copolymer, obtained by using a boron-fluoride catalyst, is shown in Fig. 1101. The 1,3-dioxolane (DOL) homopolymer spectrum contains two singlet peaks of area 1 2 numbered 1 and 5, whereas the spectrum of the 0-propiolactone (PL) homopolymer contains two triplet peaks of area 1 1 numbered 2 and 6. Variation of initial feed ratios disclosed that peaks 1,3 and S are associated with the DOL units and that... [Pg.7]

Anionic polymerization of pivalolactone with the polystyrene anion produced only homopolymer mixtures, but the polystyrene carboxylate anion was able to give a block copolymer336. The block efficiency depends on catalyst ratio and conversion because the initiation step is slow compared with propagation337. Tough and elastic films were obtained by graft copolymerization or block copolymerization of pivalolactone onto elastomers containing tetrabutylammonium carboxylate groups338,339. ... [Pg.29]

Homopolymers made with multi-site catalysts tend to have composite tacticities, with each site generating a distinctive set of intensities in accordance with certain reaction probabilities. Such polymers can be regarded as in-situ blends of several components, each one bearing a different tacticity. Fractionation would then separate the polymer into different fractions, and the tacticities of each fraction would reflect the different proportions of the various conqponents. The MMR data on the fractions potentially contain Information on the weight percent of each component as well as the reaction probabilities. [Pg.177]

As an example, polybutylene is a commercially inq ortant polymer made with Ziegler-Natta catalysts. Such catalysts frequently produce more than one catalytic site, and the resulting polymer is a blend of several homopolymers differing only in propagation statistics. Previously, the two-site E/B model has been used to analyze the tacticity of this polymer.(11,12) Reasonably good fits with experimental data were observed. [Pg.177]

The catalysts described in Table XII cannot be used to make tailored-block copolymers because of reaction (19). The latter continues in the absence of monomer resulting in detachment of chains from the transition metal centers forming hydride (XX). Introducing a second monomer would lead to realkylation of the chain centers giving a homopolymef of the second monomer. Hence mixtures of homopolymers would be obtained with little block-copolymer formation. [Pg.298]

The poly(5-fnethyl-l, 4-hexadiene) fiber pattern (Figure 6) gave an identity period of 6.3 A, indicating a 3 isotactic helix structure. The X-ray diffraction pattern was not very sharp, which may be due to the difficulty of the side chain with a double bond to fit in a crystalline lattice. The crystallinity was determined to be 15% using the Hermans and Weidinger method (27). A Chloroform-soluble fraction free from catalyst residues showed no improvement in the sharpness of the X-ray diffraction pattern. These data show that the configuration of the 1,2-polymerization units in the homopolymer of 5-methyl-1,4-hexadiene is isotactic. [Pg.181]

GTP was employed for the synthesis of block copolymers with the first block PDMAEMA and the second PDEAEMA, poly[2-(diisopropylamino)e-thyl methacrylate], PDIPAEMA or poly[2-(N-morpholino)ethyl methacrylate], PM EM A (Scheme 33) [87]. The reactions took place under an inert atmosphere in THF at room temperature with l-methoxy-l-trimethylsiloxy-2-methyl-1-propane, MTS, as the initiator and tetra-n-butyl ammonium bibenzoate, TBABB, as the catalyst. Little or no homopolymer contamination was evidenced by SEC analysis. Copolymers in high yields with controlled molecular weights and narrow molecular weight distributions were obtained in all cases. The micellar properties of these materials were studied in aqueous solutions. [Pg.51]

As described in Section 9.1.2.2.3, several lanthanocene alkyls are known to be ethylene polymerization catalysts.221,226-229 Both (188) and (190) have been reported to catalyze the block copolymerization of ethylene with MMA (as well as with other polar monomers including MA, EA and lactones).229 The reaction is only successful if the olefin is polymerized first reversing the order of monomer addition, i.e., polymerizing MMA first, then adding ethylene only affords PMMA homopolymer. In order to keep the PE block soluble the Mn of the prepolymer is restricted to <12,000. Several other lanthanide complexes have also been reported to catalyze the preparation of PE-b-PMMA,474 76 as well as the copolymer of MMA with higher olefins such as 1-hexene.477... [Pg.27]

Polymers Polyacrylamide and hydrolyzed polyacrylamide were prepared by the American Cyanamid Company specifically for this project, starting with l C labelled monomer. The radioactivity level of the monomer was kept below 0.20 mC /g in order to avoid significant spontaneous polymerization, utilizing a copper inhibitor. The homopolymer was synthesized by free radical solution polymerization in water at 40°C, using monomer recrystallized from chloroform, an ammonium persulfate-sodium metabisulfite catalyst system, and isopropanol as a chain transfer agent. Sodium... [Pg.394]


See other pages where Homopolymers catalysts is mentioned: [Pg.251]    [Pg.251]    [Pg.420]    [Pg.420]    [Pg.181]    [Pg.329]    [Pg.356]    [Pg.371]    [Pg.414]    [Pg.415]    [Pg.416]    [Pg.80]    [Pg.341]    [Pg.164]    [Pg.330]    [Pg.1220]    [Pg.47]    [Pg.31]    [Pg.45]    [Pg.251]    [Pg.494]    [Pg.166]    [Pg.166]    [Pg.4]    [Pg.156]    [Pg.262]    [Pg.181]    [Pg.172]    [Pg.88]    [Pg.172]    [Pg.61]    [Pg.19]    [Pg.174]   
See also in sourсe #XX -- [ Pg.99 ]




SEARCH



Elastomeric polypropylene homopolymers using metallocene catalysts

© 2024 chempedia.info