Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Headspace sampling techniques with SPME

Recently techniques have been developed to further reduce the sample volume required. Perhaps the most promising technique is SPME. This method consists of utilising high capacity adsorbents that are brought into contact directly with the sample (< 10 mL) or indirectly through a headspace above the sample. [Pg.429]

Arthur and Pawliszyn introduced solid-phase microextraction (SPME) in 1990 as a solvent-free sampling technique that reduces the steps of extraction, cleanup, and concentration to a unique step. SPME utilizes a small segment of fused-silica fiber coated with a polymeric phase to extract the analytes from the sample and to introduce them into a chromatographic system. Initially, SPME was used to analyze pollutants in water - via direct extraction. Subsequently, SPME was applied to more complex matrixes, such as solid samples or biological fluids. With these types of samples, direct SPME is not recommended nevertheless, the headspace mode (HSSPME) is an effective alternative to extracting volatile and semivolatile compounds from complex matrixes. (Adapted from Llompart et ah, 2001)... [Pg.219]

Besides classical headspace analysis, simultaneous distillation-extraction and solvent extraction, new sampling and enrichment developments include solvent-assisted flavour evaporation (SAFE) [3] and sorptive techniques like SPME solid-phase microextraction (SPME) [4,5] and stir-bar sorptive extraction (SBSE) [6], which are treated in a dedicated chapter in this book. This contribution will deal with advanced developments of GC techniques for improvement of separation and identification (classical multidimensional GC, or... [Pg.313]

Solid phase micro-extraction (SPME) allows isolation and concentration of volatile components rapidly and easily without the use of a solvent. These techniques are independent of the form of the matrix liquids, solids and gases can be sampled quite readily. SPME is an equilibrium technique and accurate quantification requires that the extraction conditions be controlled carefully. Each chemical component will behave differently depending on its polarity, volatility, organic/water partition coefficient, volume of the sample and headspace, speed of agitation, pH of the solution and temperature of the sample (Harmon, 2002). The techniques involve the use of an inert fiber coated with an absorbant, which govern its properties. Volatile components are adsorbed onto a suitable SPME fiber (which are usually discriminative for a range of volatile components), desorbed in the injection chamber and separated by a suitable GC column. To use this method effectively, it is important to be familiar with the factors that influence recovery of the volatiles (Reineccius, 2002). [Pg.689]

The most useful method for solvent residue analysis is GC. It can be performed by direct injection technique, or by headspace, solid phase microextraction (SPME), or single-drop microextraction (SOME) techniques [96]. GC has high selectivity, good specificity, is easy to perform, and involves simple sample preparation. Modem capillary GC allows separation of many compounds, together with their identification and quantification [96]. GC uses different detector systems, which are presented in Table 8.7. [Pg.197]

In the early 90s, a new technique called solid-phase-micro extraction (SPME), was developed (Arthur and Pawliszyn, 1990). The key-part component of the SPME device is a fused silica fiber coated with an adsorbent material such as polydimethylsiloxane (PDMS), polyacrylate (PA) and carbowax (CW), or mixed phases such as polydimethylsiloxane-divinylbenzene (PDMS-DVB), carboxen-polydimethylsiloxane (CAR-PDMS) and carboxen-polydimethyl-siloxane-divinylbenzene (CAR-PDMS-DVB). The sampling can be made either in the headspace (Vas et al., 1998) or in the liquid phase (De la Calle et al., 1996) of the samples. The headspace sampling in wine analyses is mainly useful for quantifying trace compounds with a particular affinity to the fiber phase, not easily measurable with other techniques. Exhaustive overviews on materials used for the extraction-concentration of aroma compounds were published by Ferreira et al. (1996), Eberler (2001), Cabredo-Pinillos et al. (2004) and Nongonierma et al. (2006). Analysis of the volatile compounds is usually performed by gas chromatography (GC) coupled with either a flame ionization (FID) or mass spectrometry (MS) detector. [Pg.178]

Microwave-assisted desorption coupled to in situ headspace solid-phase microextraction (HS-SPME) was first proposed as a possible alternative pretreatment of samples collected from workplace monitoring. Therefore, pretreatment that takes a short time and uses little or no organic solvents has led to the recent development of a new extraction technique. Solid-phase micro-extraction (SPME) coupled with GC analysis has been used successfully to analyze pollutants in environmental matrices. MHS has been developed to achieve one-step, in situ headspace sampling of semivolatile organic compounds in aqueous samples, vegetables, and soil [7, 55-58]. [Pg.969]

Solid phase microextraction (SPME) was introduced by Arthur and Pawliszyn over 20 years ago [44]. It is a straightforward, solvent-free, and fast sample extraction method. SPME has become a widely used technique in many areas of analytical chemistry, such as food analysis, environmental sampling, forensics/toxicology, and biological analysis. Recent reviews have been published showing the latest development of this versatile extraction method [45 8]. SPME is based on the partition of the analyte between the extraction phase and the matrix. The technique can be used to monitor analytes in liquid samples or in the headspace and is basically compatible with HPLC and CE, but most applications are made by GC. As indicated by its name, it is not an exhaustive extraction technique and only a fraction of the target analyte is actually extracted. The quantity of analyte extracted is proportional to its concentration, as long as the equilibrium between the analyte in the fiber and the sample is reached. It provides linear results for wide concentrations of analytes (typically from levels of parts per million to parts per billion). [Pg.1019]

SPME was developed by Pawlisz)m and coworkers in 1987 [161-163]. The reader may find further information on the historical evolution, principles, and commercially available devices of SPME in an excellent review by the pioneer of the technique [164]. SPME is based on a partitioning equilibrium of the solutes between the sorbent phase and the aqueous and/or gas matrix. A small amount of sorbent phase is dispersed on a solid support, which will be exposed to the sample for a predetermined time. Different implementations were developed such as suspended particles, coated-stirrer, vessel walls, disks, stirrers, or membranes, although the fiber and in-tube are explored theoretically and experimentally in depth. The former consists of a thin, fused-silica fiber-coated with sorbent on its surface and mounted in a modified GC syringe, which protects the fiber and allows handling. The latter in-tube implementation consists of an internally coated tube or capillary. The analytes are extracted by sorption when either coated fiber or tube are immersed in the water sample (direct SPME) or in the headspace above the sample (HS-SPME). [Pg.629]

The SPME device not only combines extraction and concentration but also directly transfers the absorbed compounds into a GC injector. These features of HS-SPME provide major advantages over previous headspace techniques. Coupling to GC, GC-MS (including ion-trap), split/splitless and on-column injection or desorption of the analytes in an SPME-HPLC interface have been described. A significant difference in sensitivity between direct and headspace sampling can occur only for very volatile analytes. HS-SPME introduces some selectivity into the extraction technique as only analytes with sufficient vapour pressure at room temperature are detected. An obvious drawback of HS-SPME is that semi- and non-volatiles will not be present in detectable amounts in the headspace. In combination with GC this is actually advantageous and enables faster equilibration than sampling from liquid [992]. [Pg.290]

Because liquid and headspace sampUng methods differ in kinetics, the two approaches are complementary. Equilibrium is attained more rapidly in headspace SPME than in direct-immersion SPME, because there is no liquid to hinder diffusion of the analyte onto the stationary phase. For a given sampling time, immersion SPME is more sensitive than HS-SPME for analytes predominantly present in the liquid. The reverse is true for analytes that are primarily in the headspace. Several additional factors can affect SPME and do influence the choice between immersion and headspace sampling [997]. Overall extraction with HS-SPME is apt to be lower than in direct-immersion because transfer of analytes from the sample to the gas phase seldom is quantitative. HS-SPME was compared with PT [998] and HS-GC-MS [954,999]. Application of HS-SPME eliminates many problems of other headspace techniques and extends headspace sampling to less volatile compounds due to the concentration effect at the fibre coating. Thermal desorption... [Pg.290]


See other pages where Headspace sampling techniques with SPME is mentioned: [Pg.48]    [Pg.1050]    [Pg.258]    [Pg.102]    [Pg.139]    [Pg.182]    [Pg.246]    [Pg.1076]    [Pg.195]    [Pg.603]    [Pg.235]    [Pg.159]    [Pg.172]    [Pg.10]    [Pg.375]    [Pg.129]    [Pg.33]    [Pg.42]    [Pg.58]    [Pg.18]    [Pg.49]    [Pg.195]    [Pg.45]    [Pg.55]    [Pg.249]    [Pg.250]    [Pg.1519]    [Pg.1945]    [Pg.1946]    [Pg.1951]    [Pg.3683]    [Pg.46]    [Pg.1051]    [Pg.1054]    [Pg.1054]    [Pg.1054]    [Pg.1057]    [Pg.114]    [Pg.385]    [Pg.11]   
See also in sourсe #XX -- [ Pg.291 , Pg.292 ]




SEARCH



Headspace

Headspace samples

Headspace sampling

Headspace sampling technique

Headspace techniques

SPME (

SPME Samples

Sample headspace techniques

Sampling techniques

Sampling techniques samples

© 2024 chempedia.info