Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halides, hindered

Because Step [2] is an 8 2 reaction, it works well only with unhindered methyl and 1 ° alkyl halides. Hindered alkyl halides and those with halogens bonded to sp hybridized carbons do not undergo substitution. [Pg.899]

Ullmann reaction. Brown and Robin have found that two different aryl halides hindered by bulky substituents in the orrto-positions can be coupled by a inoditied Ullmann reaction. A large excess of copper powder (not activated) is necessary and the temperature should be lower than that which leads to self-coupling of the less reactive aryl halid. At optimal temperatures, usually 190-240the reaction can tie completed in 20-30 minutes. In favorable cases yields of biphenyls as high as 757o can be obtained, example ... [Pg.366]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

The reduction of acyl halides with hydrogen to form aldehydes using Pd catalyst is well known as the Rosenmund reduction[756]. Some acyl chlorides give decarbonyiation products rather than aldehydes under Rosenmund conditions. The diene 890 was obtained by decarbonyiation in an attempted Rosenmund reduction of acetyloleanolic acid chloride (889)[757], Rosenmund reduction of sterically hindered acyl chlorides such as diphenyl- and tnpheny-lacetyl chloride (891) gives the decarbonylated products 892[758],... [Pg.259]

Tertiary alkyl halides are so sterically hindered to nucleophilic attack that the pres ence of any anionic Lewis base favors elimination Usually substitution predominates over elimination m tertiary alkyl halides only when anionic Lewis bases are absent In the solvolysis of the tertiary bromide 2 bromo 2 methylbutane for example the ratio of substitution to elimination is 64 36 m pure ethanol but falls to 1 99 m the presence of 2 M sodium ethoxide... [Pg.349]

The alternative synthetic route using the sodium salt of benzyl alcohol and an isopropyl halide would be much less effective because of increased competition from elimination as the alkyl halide becomes more sterically hindered... [Pg.673]

Because fhe new carbon-carbon bond is formed by an 8 2 lype reaction fhe alkyl halide musl nol be slerically hindered Melhyl and primary alkyl halides work besl secondary alkyl halides give lower yields Tertiary alkyl halides fail reacting only by elimination nol subslilulion... [Pg.894]

Halide ions may attack 5-substituted thiiranium ions at three sites the sulfur atom (Section 5.06.3.4.5), a ring carbon atom or an 5-alkyl carbon atom. In the highly sterically hindered salt (46) attack occurs only on sulfur (Scheme 62) or the S-methyl group (Scheme 89). The demethylation of (46) by bromide and chloride ion is the only example of attack on the carbon atom of the sulfur substituent in any thiiranium salt (78CC630). Iodide and fluoride ion (the latter in the presence of a crown ether) prefer to attack the sulfur atom of (46). cis-l-Methyl-2,3-di-t-butylthiiranium fluorosulfonate, despite being somewhat hindered, nevertheless is attacked at a ring carbon atom by chloride and bromide ions. The trans isomer could not be prepared its behavior to nucleophiles is therefore unknown (74JA3146). [Pg.162]

The preparation of esters can be classified into two main categories (1) carboxy-late activation with a good leaving group and (2) nucleophilic displacement of a caiboxylate on an alkyl halide or sulfonate. The latter approach is generally not suitable for the preparation of esters if the halide or tosylate is sterically hindered, but there has been some success with simple secondaiy halides and tosylates (ROTs, DMF, K2CO3, 69-93% yield). ... [Pg.227]

Alkylations of enamines of a,)9-unsaturated ketones with alkyl halides often give very poor yields of C-alkylated products because of competing. -alkylation.In the type of transformation illustrated here, direct alkylations of enamines are completely unsuccessful, even in cases where hindered enamines are used. On the other hand, the metaUoenamine method can be applied generally with good success in the problem of monoalkylation of ,)3-unsaturated ketones. ... [Pg.71]

Instances of substitution of hindered alkyl halides by the SrnI mechanism have also been documented. Some examples are shown below. [Pg.733]

Mixed halide additions are most satisfactorily interpreted as proceeding via a halonium complex (1), in which the less electronegative halogen approaches from the less hindered a-side. The energetic preference for a pm-planar transition state leading to the diaxial product (2) is sufliciently great that the... [Pg.457]

The equatorial orientation of the newly introduced alkyl group may be controlled in both (3) and (6) by stereoelectronic and steric factors. The attack of the enolate anions (2) and (5) by the alkyl halide proceeds in a plane that is perpendicular to the plane of the enolate system. Products result from attack at the less hindered a- or -face, respectively... [Pg.86]

The hydrocarbon vinyl iodides behave similarly. The perfluoroacetylenic copper reagents react readily with allyl halides, and preferred attack is at the least hindered position [147, 255] (equation 174). [Pg.712]

Trends in chemical reactivity are also apparent, e.g. ease of hydrolysis tends to increase from the non-hydrolysing predominantly ionic halides, through the intermediate halides to the readily hydrolysable molecular halides. Reactivity depends both on the relative energies of M-X and M-0 bonds and also, frequently, on kinetic factors which may hinder or even prevent the occurrence of thermodynamically favourable reactions. Further trends become apparent within the various groups of halides and are discussed at appropriate points throughout the text. [Pg.824]

The mechanism of the asymmetric alkylation of chiral oxazolines is believed to occur through initial metalation of the oxazoline to afford a rapidly interconverting mixture of 12 and 13 with the methoxy group forming a chelate with the lithium cation." Alkylation of the lithiooxazoline occurs on the less hindered face of the oxazoline 13 (opposite the bulky phenyl substituent) to provide 14 the alkylation may proceed via complexation of the halide to the lithium cation. The fact that decreased enantioselectivity is observed with chiral oxazoline derivatives bearing substituents smaller than the phenyl group of 3 is consistent with this hypothesis. Intermediate 13 is believed to react faster than 12 because the approach of the electrophile is impeded by the alkyl group in 12. [Pg.238]

If the alkyl halide contains more than one, equally reactive C-halogen centers, these will generally react each with one aromatic substrate molecule. For example dichloromethane reacts with benzene to give diphenylmethane, and chloroform will give triphenylmethane. The reaction of tetrachloromethane with benzene however stops with the formation of triphenyl chloromethane 7 (trityl chloride), because further reaction is sterically hindered ... [Pg.121]

Finally the aminoquinoline bearing a primary amine at the terminal carbon atom of the side chain is itself an effective antimalarial drug. Ring opening of 2-methyltetrahydrofuran by bromine gives the dibromide, 99. The primary halide is sufficiently less hindered so that reaction with potassium phthalimide affords exclusively the product of displacement of that halogen (100). Alkylation of the aminoquinoline with lOO affords the secondary amine, 101. Removal of the phthalimide group by means of hydrazine yields primaquine (102). ... [Pg.346]

The first SN2 reaction variable to look at is the structure of the substrate. Because the S, j2 transition state involves partial bond formation between the incoming nucleophile and the alkyl halide carbon atom, it seems reasonable that a hindered, bulky substrate should prevent easy approach of the nucleophile, making bond formation difficult. In other words, the transition state for reaction of a sterically hindered alkvl halide, whose carbon atom is "shielded" from approach of the incoming nucleophile, is higher in energy... [Pg.365]

Because the Williamson synthesis is an S 2 reaction, it is subject to all the usual constraints, as discussed in Section 11.2. Primary halides and tosylates work best because competitive E2 elimination can occur with more hindered substrates. Unsymmetrical ethers should therefore be synthesized by reaction between the more hindered alkoxide partner and less hindered halide partner rather than vice versa. For example, terf-butyl methyl ether, a substance used in the 1990s as an octane booster in gasoline, is best prepared by reaction of tert-butoxide ion. with iodomethane rather than by reaction of methoxide ion with 2-chloro-2-methylpropane. [Pg.655]

Acidic ether cleavages are typical nucleophilic substitution reactions, either SN1 or Sn2 depending on the structure of the substrate. Ethers with only primary and secondary alkyl groups react by an S 2 mechanism, in which or Br attacks the protonated ether at the less hindered site. This usually results in a selective cleavage into a single alcohol and a single alkyl halide. For example, ethyl isopropyl ether yields exclusively isopropyl alcohol and iodoethane on cleavage by HI because nucleophilic attack by iodide ion occurs at the less hindered primary site rather than at the more hindered secondary site. [Pg.658]


See other pages where Halides, hindered is mentioned: [Pg.507]    [Pg.103]    [Pg.103]    [Pg.507]    [Pg.103]    [Pg.103]    [Pg.20]    [Pg.335]    [Pg.1253]    [Pg.1287]    [Pg.90]    [Pg.163]    [Pg.177]    [Pg.335]    [Pg.1253]    [Pg.103]    [Pg.209]    [Pg.169]    [Pg.15]    [Pg.128]    [Pg.366]    [Pg.372]    [Pg.937]    [Pg.387]    [Pg.567]    [Pg.877]   
See also in sourсe #XX -- [ Pg.44 , Pg.430 ]




SEARCH



Hindered

© 2024 chempedia.info