Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halides catalytic activity

Solid Superacids. Most large-scale petrochemical and chemical industrial processes ate preferably done, whenever possible, over soHd catalysts. SoHd acid systems have been developed with considerably higher acidity than those of acidic oxides. Graphite-intercalated AlCl is an effective sohd Friedel-Crafts catalyst but loses catalytic activity because of partial hydrolysis and leaching of the Lewis acid halide from the graphite. Aluminum chloride can also be complexed to sulfonate polystyrene resins but again the stabiUty of the catalyst is limited. [Pg.565]

Triflates of aluminum, gallium and boron, which are readily available by the reaction of the corresponding chlorides with triflic acid, are effective Fnedel-Crafis catalysis for alkylation and acylation of aromatic compounds [119, 120] Thus alkylation of toluene with various alkyl halides m the presence of these catalysts proceeds rapidly at room temperature 111 methylene chloride or ni-tromethane Favorable properties of the triflates in comparison with the correspond mg fluorides or chlorides are considerably decreased volatility and higher catalytic activity [120]... [Pg.964]

For the performance of an enantioselective synthesis, it is of advantage when an asymmetric catalyst can be employed instead of a chiral reagent or auxiliary in stoichiometric amounts. The valuable enantiomerically pure substance is then required in small amounts only. For the Fleck reaction, catalytically active asymmetric substances have been developed. An illustrative example is the synthesis of the tricyclic compound 17, which represents a versatile synthetic intermediate for the synthesis of diterpenes. Instead of an aryl halide, a trifluoromethanesul-fonic acid arylester (ArOTf) 16 is used as the starting material. With the use of the / -enantiomer of 2,2 -Z7w-(diphenylphosphino)-l,F-binaphthyl ((R)-BINAP) as catalyst, the Heck reaction becomes regio- and face-selective. The reaction occurs preferentially at the trisubstituted double bond b, leading to the tricyclic product 17 with 95% ee. °... [Pg.157]

It is so universally applied that it may be found in combination with metal oxide cathodes (e.g., HgO, AgO, NiOOH, Mn02), with catalytically active oxygen electrodes, and with inert cathodes using aqueous halide or ferricyanide solutions as active materials ("zinc-flow" or "redox" batteries). The cell (battery) sizes vary from small button cells for hearing aids or watches up to kilowatt-hour modules for electric vehicles (electrotraction). Primary and storage batteries exist in all categories except that of flow-batteries, where only storage types are found. Acidic, neutral, and alkaline electrolytes are used as well. The (simplified) half-cell reaction for the zinc electrode is the same in all electrolytes ... [Pg.199]

Transition metal complexes that are easy to handle and store are usually used for the reaction. The catalytically active species such as Pd(0) and Ni(0) can be generated in situ to enter the reaction cycle. The oxidative addition of aryl-alkenyl halides can occur to these species to generate Pd(II) or Ni(II) complexes. The relative reactivity for aryl-alkenyl halides is RI > ROTf > RBr > RC1 (R = aryl-alkenyl group). Electron-deficient substrates undergo oxidative addition more readily than those electron-rich ones because this step involves the oxidation of the metal and reduction of the organic aryl-alkenyl halides. Usually... [Pg.483]

The general catalytic cycle for the coupling of aryl-alkenyl halides with alkenes is shown in Fig. 9.6. The first step in this catalytic cycle is the oxidative addition of aryl-alkenyl halides to Pd(0). The activity of the aryl-alkenyl halides still follows the order RI > ROTf > RBr > RC1. The olefin coordinates to the Pd(II) species. The coordinated olefin inserts into Pd—R bond in a syn fashion, p-Hydrogen elimination can occur only after an internal rotation around the former double bond, as it requires at least one /I-hydrogen to be oriented syn perpendicular with respect to the halopalladium residue. The subsequent syn elimination yields an alkene and a hydridopalladium halide. This process is, however, reversible, and therefore, the thermodynamically more stable (E)-alkene is generally obtained. Reductive elimination of HX from the hydridopalladium halide in the presence of a base regenerates the catalytically active Pd(0), which can reenter the catalytic cycle. The oxidative addition has frequently assumed to be the rate-determining step. [Pg.486]

Polk et al. reported27 that PET fibers could be hydrolyzed with 5% aqueous sodium hydroxide at 80°C in the presence of trioctylmethylammonium bromide in 60 min to obtain terephthalic acid in 93% yield. The results of catalytic depolymerization of PET without agitation are listed in Table 10.1. The results of catalytic depolymerization of PET with agitation are listed in Table 10.2. As expected, agitation shortened the time required for 100% conversion. Results (Table 10.1) for the quaternary salts with a halide counterion were promising. Phenyltrimethylammonium chloride (PTMAC) was chosen to ascertain whether steric effects would hinder catalytic activity. Bulky alkyl groups of the quaternary ammonium compounds were expected to hinder close approach of the catalyst to the somewhat hidden carbonyl groups of the fiber structure. The results indicate that steric hindrance is not a problem for PET hydrolysis under this set of conditions since the depolymerization results were substantially lower for PTMAC than for die more sterically hindered quaternary salts. [Pg.547]

As shown in Table IV, the highest catalytic activity of metal halides used as Lewis acid for the alkylation reaction of ferrocene with 2 was observed in methylene chloride solvent. Among Lewis acids such as aluminum chloride, aluminum bromide, and Group 4 transition metal chlorides (TiCl4, ZrCU, HfCU), catalytic efficiency for the alkylation decrea.ses in the following order hafnium chloride > zirconium chloride > aluminum chloride > aluminum bromide. Titanium chloride... [Pg.155]

Organosilanes, especially dimethyldichlorosilane (M2), are important chemicals used in the silicone industries. The direct reaction of silicon with an organic halide to produce the corresponding organosilanes as a gas-solid-solid catalytic reaction was first disclosed by Rochow [1]. In the reaction, a copper-containing precursor first reacts with silicon particles to form the catalytically active component, which is a copper-silicon alloy, the exact state of which is still under discussion. As the reaction proceeds. Si in the alloy is consumed, which is followed by the release of copper. This copper diffuses into the Si lattice to form new reaction centers until deactivation occurs. The main reaction of the direct process is ... [Pg.325]

In our previous works[8,9] on the synthesis of various 5-membered cyclic carbonate, quaternary ammonium salts such as tetrabutylammonium halides showed excellent catalytic activities in relatively mild reaction conditions, under atmospheric pressure and below 140 U. hi this work, several kinds of quaternary ammonium salts have been used for the transesterification reactions of the ethylaie carbonate with methanol to DMC and ethylene glycol. [Pg.329]

The induced reduction of chlorate can be inhibited by iodide, bromide and chloride ions. The effectiveness of these ions is about 400 10 1 in the given order. The order and the magnitude of the effect agree fairly well with the catalytic activity of these ions in the arsenic(III)-cerium(IV) reaction. This inhibition by halides is presumably connected with the opening of a new two-electron route for the arsenic(III)-cerium(IV) reaction. [Pg.551]

The Mizoroki-Heck reaction is a metal catalysed transformation that involves the reaction of a non-functionalised olefin with an aryl or alkenyl group to yield a more substituted aUcene [11,12]. The reaction mechanism is described as a sequence of oxidative addition of the catalytic active species to an aryl halide, coordination of the alkene and migratory insertion, P-hydride elimination, and final reductive elimination of the hydride, facilitated by a base, to regenerate the active species and complete the catalytic cycle (Scheme 6.5). [Pg.160]

The mechanism involves a Pd(0) monocoordinate complex as the active species that undergoes oxidative addition to the aryl halide [141]. Thereafter, coordination of the amine to the palladium centre and deprotonation by the external base results in halide abstraction. After reductive elimination, the coupling product is obtained and the catalytic active species regenerated (Scheme 6.45). [Pg.181]

The catalytic activity, however, is generally associated with leaching of the metal into solution, the reaction being most likely catalyzed by soluble active Pd species. Palladium leaching is generally caused by oxidative attack of the aryl halide on the metal nanoparticles, giving catalyt-ically active aryl halide Pd(II) species in solution [30]. [Pg.443]

Under all the conditions studied, addition of bare Si02-SH to Heck or Suzuki coupling reactions using a variety of bases, aryl halides and solvents resulted in complete cessation of the catalytic activity (35). These results suggest that catalysis with this precatalyst is also associated with labile palladium species that... [Pg.197]

Recently several pubhcations have examined replacing aqueous solvents with ionic liquids. Since simple and complex sugars are soluble in many imidazolium hahdes, water is not required as a co-solvent and degradation of HMF is minimal. Lansalot-Matras et al. reported on the dehydration of fmctose in imidazolium ionic liquids using acid catalyst (6). Moreau et al. reported that l-H-3-methylimidazolium chloride has sufficient acidity to operate without added acid (7). And we reported that a 0.5 wt% loading (6 mole% compared to substrate) of many metal halides in 1-ethyl-3-methylimidazohum chloride ([EMIM]C1) result in catalytically active materials particularly useful for dehydration reactions (8). [Pg.411]

Freeder, B. G. et al., J. Loss Prev. Process Ind., 1988, 1, 164-168 Accidental contamination of a 90 kg cylinder of ethylene oxide with a little sodium hydroxide solution led to explosive failure of the cylinder over 8 hours later [1], Based on later studies of the kinetics and heat release of the poly condensation reaction, it was estimated that after 8 hours and 1 min, some 12.7% of the oxide had condensed with an increase in temperature from 20 to 100°C. At this point the heat release rate was calculated to be 2.1 MJ/min, and 100 s later the temperature and heat release rate would be 160° and 1.67 MJ/s respectively, with 28% condensation. Complete reaction would have been attained some 16 s later at a temperature of 700°C [2], Precautions designed to prevent explosive polymerisation of ethylene oxide are discussed, including rigid exclusion of acids covalent halides, such as aluminium chloride, iron(III) chloride, tin(IV) chloride basic materials like alkali hydroxides, ammonia, amines, metallic potassium and catalytically active solids such as aluminium oxide, iron oxide, or rust [1] A comparative study of the runaway exothermic polymerisation of ethylene oxide and of propylene oxide by 10 wt% of solutions of sodium hydroxide of various concentrations has been done using ARC. Results below show onset temperatures/corrected adiabatic exotherm/maximum pressure attained and heat of polymerisation for the least (0.125 M) and most (1 M) concentrated alkali solutions used as catalysts. [Pg.315]

Katsuki et al. have reported that the CoIII(salen) ((98) X = I, Y = t-Bu) bearing an apical halide ligand shows high trara-selectivity in the cyclopropanation of styrene and its derivatives, albeit with moderate enantioselectivity (Scheme 71).267 The enantioselectivity is influenced, however, by the natures of the apical ligand and the 5,5 -substituents, and high enantio- and traMs-selectivity has been realized by their appropriate tuning ((98) X = Br, Y = OMe).268 It is noteworthy that the CoIII(salen) complex bearing substituents at C3 and C3 shows no catalytic activity. [Pg.250]

The formation of aryl selenides from aryl halides and sodium benzeneselenoate occurs in the presence of nickel catalysts (Equation (41)).132 The trend in catalytic activity was shown to be... [Pg.385]

These studies demonstrate that two alkoxide ligands can take the place of an oxo ligand and that aluminum halides, by coordinating to a halide ligand, can generate an efficient and long-lived catalyst. It is possible that [W(CHR)(0R)2(Br)]+AlBr4- is responsible for the catalytic activity, but at low concentrations, and in the... [Pg.358]

Not only phosphines or phosphites but also phosphoric acid trisdialkyl-amides (40), sulfoxides (41), etc. have been used as electron donors in the preparation of the catalyst. In addition, the catalytic activity of tetra-methylcyclobutadienenickel dichloride and alkylaluminum halides has been studied in detail (42, 43). [Pg.109]

The behavior of 3 toward ether or amines on the one hand and toward phosphines, carbon monoxide, and COD on the other (Scheme 2), can be qualitatively explained on the basis of the HSAB concept4 (58). The decomposition of 3 by ethers or amines is then seen as the displacement of the halide anion as a weak hard base from its acid-base complex (3). On the other hand, CO, PR3, and olefins are soft bases and do not decompose (3) instead, complexation to the nickel atom occurs. The behavior of complexes 3 and 4 toward different kinds of electron donors explains in part why they are highly active as catalysts for the oligomerization of olefins in contrast to the dimeric ir-allylnickel halides (1) which show low catalytic activity. One of the functions of the Lewis acid is to remove charge from the nickel, thereby increasing the affinity of the nickel atom for soft donors such as CO, PR3, etc., and for substrate olefin molecules. A second possibility, an increase in reactivity of the nickel-carbon and nickel-hydrogen bonds toward complexed olefins, has as yet found no direct experimental support. [Pg.112]

Reactions leading to the formation of the catalytically active nickel hydride species from organonickel precursors (Section III) can be regarded as model reactions for olefin oligomerization reactions. The reactions described by Eq. (8) and Scheme 3 (Section III) show that RNiX compounds (R = methyl orallyl, X = halide or acetylacetonate) activated by Lewis acids add to double bonds under mild reaction conditions (-40° or 0°C). It follows further from these reactions that under conditions leading to olefin dimerization a rapid nickel hydride /3-hydrogen elimination reaction occurs. The fact that products resulting from olefin insertion into the nickel-carbon bond are only observed when /3-hydride... [Pg.119]


See other pages where Halides catalytic activity is mentioned: [Pg.149]    [Pg.918]    [Pg.567]    [Pg.4]    [Pg.89]    [Pg.575]    [Pg.83]    [Pg.308]    [Pg.47]    [Pg.183]    [Pg.171]    [Pg.213]    [Pg.213]    [Pg.575]    [Pg.228]    [Pg.240]    [Pg.723]    [Pg.117]    [Pg.280]    [Pg.337]    [Pg.103]    [Pg.31]    [Pg.49]    [Pg.227]    [Pg.25]    [Pg.112]    [Pg.113]    [Pg.103]   
See also in sourсe #XX -- [ Pg.319 , Pg.320 , Pg.321 , Pg.322 , Pg.323 , Pg.324 , Pg.325 , Pg.326 , Pg.327 , Pg.328 ]




SEARCH



Activations halides

Halides active

© 2024 chempedia.info