Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glyoxylate cycloaddition

Another important feature of this synthetic approach is that even with achiral glyoxylates cycloadditions generally show good diastereofacial selectivity, even though endo/exo mixtures (which are subsequently equilibratable) are usually formed. Table 4-1 shows some stereochemical... [Pg.237]

Isothiazole-4,5-dicarboxylic acid, 3-phenyl-dimethyl ester synthesis, S, 150 Isothiazole-5-glyoxylic acid ethyl ester reduction, 6, 156 Isothiazole-4-mercurioacetate reactions, 6, 164 Isothiazole-5-mercurioacetate reactions, 6, 164 Isothiazoles, 6, I3I-I75 acidity, 6, 141 alkylation, 6, 148 aromaticity, S, 32 6, 144-145 basicity, 6, I4I biological activity, 6, 175 boiling points, 6, I43-I44, 144 bond fixation, 6, 145 bond orders, 6, I32-I34 calculated, 6, 133 bromination, S, 58 6, 147 charge densities, 6, 132-134 cycloaddition reactions, 6, 152 desulfurization, S, 75 6, 152 deuteration, S, 70... [Pg.683]

TosMIC reagents. For example, glyoxylic acid ethyl ester undergoes cycloaddition with (2-naphthyl) tosylmethyl isonitrile (17) to produce oxazole 18 in good yield. ... [Pg.256]

The reaction course of the cycloaddition reaction can also be dependent on the Lewis acid complex used as the catalyst. When the substrate contains an allylic C-H bond, both a cycloaddition and an ene reaction can occur. In the reaction of glyoxylate 4 with 2,3-dimethyl-l,3-butadiene 5 both the cycloaddition product 6... [Pg.154]

The mechanism of the reaction of ethyl glyoxylate 4 with 2,3-dimethyl-l,3-hutadiene 5 leading to the ene product 7 is shown in Scheme 4.5. This brief introduction to the reaction mechanism for cycloaddition reactions of carhonyl compounds activated hy Lewis acids indicates that many factors influence the course of the reaction. [Pg.155]

Chiral boron(III) complexes can catalyze the cycloaddition reaction of glyoxy-lates with Danishefsky s diene (Scheme 4.18) [27]. Two classes of chiral boron catalyst were tested, the / -amino alcohol-derived complex 18 and bis-sulfonamide complexes. The former catalyst gave the best results for the reaction of methyl glyoxylate 4b with diene 2a the cycloaddition product 6b was isolated in 69% yield and 94% ee, while the chiral bis-sulfonamide boron complex resulted in only... [Pg.164]

The interest in chiral titanium(IV) complexes as catalysts for reactions of carbonyl compounds has, e.g., been the application of BINOL-titanium(IV) complexes for ene reactions [8, 19]. In the field of catalytic enantioselective cycloaddition reactions, methyl glyoxylate 4b reacts with isoprene 5b catalyzed by BINOL-TiX2 20 to give the cycloaddition product 6c and the ene product 7b in 1 4 ratio enantio-selectivity is excellent - 97% ee for the cycloaddition product (Scheme 4.19) [28]. [Pg.165]

Chiral salen-cobalt(III) complexes can also catalyze the reaction of glyoxylates with activated dienes to give the cycloaddition product in moderate yield and ee [29]. [Pg.167]

Chiral C2-symmetric bisoxazoline-copper(II) complexes [30, 31] were introduced as catalysts for cycloaddition and ene reactions of glyoxylates with dienes [9] leading to intense activity in the use of these catalyst for different cycloaddition reactions. [Pg.167]

The cycloaddition reaction between ethyl glyoxylate 4a and Danishefsky s diene 2a has been investigated by Ghosh et al. applying catalyst systems derived from Cu(OTf)2 and ligands (S)-Ph-BOX (S)-21a, (S)-t-Bu-BOX (S)-21b, and the confer-... [Pg.168]

Chiral BOX-zinc(II) complexes can also catalyze the cycloaddition reaction of glyoxylates with, e.g., 2,3-dimethyl-l,3-butadiene and 1,3-cyclohexadiene [36]. The reaction gave for the former diene a higher cycloaddition product/ene product ratio compared with the corresponding chiral copper(II) complexes the ee, however, was slightly reduced. For the reaction of 1,3-cyclohexadiene slightly lower yield and ee were also found. [Pg.170]

Few investigations have included chiral lanthanide complexes as catalysts for cycloaddition reactions of activated aldehydes [42]. The reaction of tert-butyl glyoxylate with Danishefsky s diene gave the expected cycloaddition product in up to 88% yield and 66% ee when a chiral yttrium bis-trifluoromethanesulfonylamide complex was used as the catalyst. [Pg.173]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

The cycloaddition of glyoxylic acid with cyclopentadiene in water at pH 6 and 60 °C is slow and occurs with low yield and low diastereoselectivity [18] (Scheme 6.17). Proton (pH = 0.9) [18], copper salts [27] and Bi(OTf)3 [28] accelerate the reaction and increase the diastereoselectivity. The lactones 28 and 29 originate from endo and exo cycloadducts 27, respectively. The proposed rearrangement is depicted in Scheme 6.17 for the major endo adduct 30. A competitive ene reaction that originates 28 and 29 cannot be excluded [28]. [Pg.265]

Electron-rich 6-[(dimethyl(amino)methylene)amino uracil 82 underwent [4+2] cycloaddition reactions with various in situ generated glyoxylate imine and imine oxides to afford novel pyrinhdo[4,5-J]pyrimicline derivatives 83-84 after elimination of dimethylamine from the (1 1) cycloadducts and oxidative aromatization. This one-pot procedure yielded excellent yields when carried out in the solid state and under microwave irradiation <06BMCL3537>. [Pg.427]

Examples of the use of heterodienophiles under the action of microwave irradiation are not common. Soufiaoui [84] and Garrigues [37] used carbonyl compounds as die-nophiles. The first example employed solvent-free conditions the second is an example of the use of graphite as a susceptor. Cycloaddition of a carbonyl compound provided a 5,6-dihydro-2H-pyran derivative. These types of reaction proceed poorly with aliphatic and aromatic aldehydes and ketones unless highly reactive dienes and/or Lewis acid catalysts are used. Reaction of 2,3-dimethyl-l,3-butadiene (31) with ethyl glyoxylate (112) occurred in 75% yield in 20 min under the action of microwave irradiation. When conventional heating is used it is necessary to heat the mixture at 150 °C for 4 h in a sealed tube to obtain a satisfactory yield (Scheme 9.33). [Pg.315]

Ghosh et al. (228) investigated the cycloaddition of Danishefsky s diene (1-methoxy-3-trimethylsiloxybutadiene, 334) and glyoxylate esters. The reaction provides a mixture of the Mukaiyama aldol product (336) and dihydropyrone (335). Treatment of the unpurified reaction mixture with trifluoroacetic acid induced the cyclocondensation to provide dihydropyrone (335) in 70% combined yield and 72% ee, Eq. 188. [Pg.112]

In recent years, much work has been done on catalyzed and asymmetric cycloaddition reactions. In the presence of 5 mol% bismuth trichloride, the simple dienes 10 (R1 = R" = H R1 = H, R2 = Me or R1 = Me, R2 = H) react with diethyl mesoxalate to afford mixtures of the cycloadducts 11 and the products 12 of an ene-reaction (equation 13)11 12. 1,3-Cyclohexadiene and ethyl glyoxylate give solely the endo adduct 13 in 50% yield (equation 14)12. [Pg.485]

The tandem transesterification/[3 + 2]-cycloaddition methodology is be a powerful synthetic tool, since it guarantees high diastereoselectivity even under thermal conditions. It has been successfully apphed to synthetic work of the N-terminal amino acid component of Nikkomycin Bz (Scheme 11.53) (173). Thus, the sugar-based oxime is condensed with a glyoxylate hemiacetal to produce a chiral nitrone ester, which is then reacted with ( )-p-niethoxycinnamyl alcohol in the presence of a catalytic amount of TiCU at 100 °C. After the intramolecular cycloaddition, the... [Pg.802]

The enantioselective inverse electron-demand 1,3-dipolar cycloadditions of nitrones with alkenes described so far are catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminium complexes. However, the glyoxylate-derived nitrone 256 favors abidentate coordination to the catalyst, and this nitrone is an interesting substrate, since the products that are obtained from the reaction with alkenes are masked ot-amino acids (Scheme 12.81). [Pg.877]

Imines derived from aniline and glyoxylic acid esters can be regarded as electron-poor 2-azadienes, in which an aromatic carbon—carbon double bond takes part of the diene system. In this context, Prato and Scorrano et al. were able to achieve the [4 + 2] cycloaddition of ethyl N-phenyl glyoxylate imines with dihydrofuran and indene leading to hexahydrof-uro[3,2-c]- and tetrahydro-7//-indeno[2,l-c]quinolines, respectively, in moderate to good yields (88JHC1831). Similarly, tetrahydroquinoline derivatives were formed by [4 + 2] cycloaddition of 1,2-bis(trimethylsily-... [Pg.43]

Cycloaddition of esters of glyoxylic acid occurs only with the trams-... [Pg.125]

Cycloaddition of Butyl Glyoxylate to ttans-Dienyl Ether 4... [Pg.626]


See other pages where Glyoxylate cycloaddition is mentioned: [Pg.160]    [Pg.160]    [Pg.164]    [Pg.167]    [Pg.168]    [Pg.170]    [Pg.170]    [Pg.173]    [Pg.183]    [Pg.52]    [Pg.434]    [Pg.270]    [Pg.506]    [Pg.111]    [Pg.201]    [Pg.89]    [Pg.295]    [Pg.22]    [Pg.123]    [Pg.125]    [Pg.219]    [Pg.617]    [Pg.618]    [Pg.438]   
See also in sourсe #XX -- [ Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 ]




SEARCH



Glyoxylate

© 2024 chempedia.info