Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric reactions 2+2 cycloaddition

Cycloaddition reactions. Asymmetric induction in cycloaddition of enals is based on the formation of conjugated iminium salts with bulky prolinol derivatives. Reaction partners include enamides and cyclopentadiene. The Diels-Alder reaction (catalyst 3B) is exo-... [Pg.378]

Berkessel, A. Groger, H. Chapter 8 Cycloaddition Reactions. Asymmetric Organocatalysis From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wemheim Wiley-VCH. 2005, p. 256-268. ISBN 3-527-30517-3. [Pg.741]

Sulfines derived from proline 36 also reacted with 2,3-dimethyl-l,3-butadiene to give the expected cycloadducts 37 . During the cycloaddition reactions, asymmetric induction of up to 40 % is observed. The best results are obtained when one of the sultine substituents is a chloro group and when the reaction is performed at -78 °C. All thiopyran j -oxides obtained in this manner are mixtures of diastereomers. [Pg.21]

The [2 + 2] cycloaddition reaction of A -benzyl-l,4-dihydropyridine 34b with acrylonitrile, followed by catalytic reduction gave two pairs of diastereoisomeric amides 36 and 37 with a low diastereomeric excess, probably due to the large distance between the asymmetric center and the site of acrylonitrile attack. Compounds 36 and 37 were resolved into the four individual diastereoisomers (ca 5% for compound 36 and 15% for 37) [97JCR(M)321], Irradiation of 1,4-dibenzyl-1,4,5,6-tetrahydropyridine 38 in the presence of 29 gave two stereoisomers. [Pg.277]

Asymmetric synthesis of 3-amino (3-lactams via Staudinger ketene-imine cycloaddition reaction 98KGS1448. [Pg.228]

Asymmetric bias generated by protected vicinal diol controller and its application to asymmetric nitrone-olefin cycloaddition reactions 98YGK86. [Pg.253]

Catalytic asymmetric Diels-Alder reactions are presented by Hayashi, who takes as the starting point the synthetically useful breakthrough in 1979 by Koga et al. The various chiral Lewis acids which can catalyze the reaction of different dieno-philes are presented. Closely related to the Diels-Alder reaction is the [3-1-2] carbo-cyclic cycloaddition of palladium trimethylenemethane with alkenes, discovered by Trost and Chan. In the second chapter Chan provides some brief background information about this class of cycloaddition reaction, but concentrates primarily on recent advances. The part of the book dealing with carbo-cycloaddition reactions is... [Pg.2]

Chiral boron(III) Lewis acid catalysts have also been used for enantioselective cycloaddition reactions of carbonyl compounds [17]. The chiral acyloxylborane catalysts 9a-9d, which are also efficient catalysts for asymmetric Diels-Alder reactions [17, 18], can also catalyze highly enantioselective cycloaddition reactions of aldehydes with activated dienes. The arylboron catalysts 9b-9c which are air- and moisture-stable have been shown by Yamamoto et al. to induce excellent chiral induction in the cycloaddition reaction between, e.g., benzaldehyde and Danishefsky s dienes such as 2b with up to 95% yield and 97% ee of the cycloaddition product CIS-3b (Scheme 4.9) [17]. [Pg.159]

See e.g. (a) W. Cahhuthehs, Cycloaddition Reactions in Organic Synthesis, Tetrahedron Organic Chemistry Series Vol. 8 Pergamon Press Elmsford, NY 1990 (b) I. OjiMA, Catalytic Asymmetric Synthesis, VCH Publishers. Inc. New York. 1993 ... [Pg.183]

Asymmetric Metal-catalyzed 1,3-Dipolar Cycloaddition Reactions... [Pg.210]

The 1,3-dipoles consist of elements from main groups IV, V, and VI. The parent 1,3-dipoles consist of elements from the second row and the central atom of the dipole is limited to N or O [10]. Thus, a limited number of structures can be formed by permutations of N, C, and O. If higher row elements are excluded twelve allyl anion type and six propargyl/allenyl anion type 1,3-dipoles can be obtained. However, metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions have only been explored for the five types of dipole shown in Scheme 6.2. [Pg.212]

Finally, there is the enantioselectivity of the 1,3-dipolar cycloaddition reactions. This chapter is limited to describing only the metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions that involve non-chiral starting materials. The only fac-... [Pg.217]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

The first, and so far only, metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction of nitrile oxides with alkenes was reported by Ukaji et al. [76, 77]. Upon treatment of allyl alcohol 45 with diethylzinc and (l ,J )-diisopropyltartrate, followed by the addition of diethylzinc and substituted hydroximoyl chlorides 46, the isoxazolidines 47 are formed with impressive enantioselectivities of up to 96% ee (Scheme 6.33) [76]. [Pg.235]

The above described approach was extended to include the 1,3-dipolar cycloaddition reaction of nitrones with allyl alcohol (Scheme 6.35) [78]. The zinc catalyst which is used in a stoichiometric amount is generated from allyl alcohol 45, Et2Zn, (R,J )-diisopropyltartrate (DIPT) and EtZnCl. Addition of the nitrone 52a leads to primarily tmns-53a which is obtained in a moderate yield, however, with high ee of up to 95%. Application of 52b as the nitrone in the reaction leads to higher yields of 53b (47-68%), high trans selectivities and up to 93% ee. Compared to other metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions of... [Pg.236]

Whereas there are numerous examples of the application of the products from diastereoselective 1,3-dipolar cycloaddition reaction in synthesis [7, 8], there are only very few examples on the application of the products from metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction in the synthesis of potential target molecules. The reason for this may be due to the fact that most metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction have been carried out on model systems that have not been optimized for further derivatization. One exception of this is the synthesis of a / -lactam by Kobayashi and Kawamura [84]. The isoxazoli-dine endo-21h, which was obtained in 96% ee from the Yb(OTf)3-BINOL-catalyzed... [Pg.239]

The first report on metal-catalyzed asymmetric azomethine ylide cycloaddition reactions appeared some years before this topic was described for other 1,3-dipolar cycloaddition reactions [86]. However, since then the activity in this area has been very limited in spite of the fact that azomethine ylides are often stabilized by metal salts as shown in Scheme 6.40. [Pg.240]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

Although the first metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction involved azomethine ylides, there has not been any significant activity in this area since then. The reactions that were described implied one of more equivalents of the chiral catalyst, and further development into a catalytic version has not been reported. [Pg.245]


See other pages where Asymmetric reactions 2+2 cycloaddition is mentioned: [Pg.247]    [Pg.90]    [Pg.252]    [Pg.167]    [Pg.170]    [Pg.171]    [Pg.212]    [Pg.227]    [Pg.241]    [Pg.242]   
See also in sourсe #XX -- [ Pg.456 ]

See also in sourсe #XX -- [ Pg.456 ]

See also in sourсe #XX -- [ Pg.98 , Pg.456 ]




SEARCH



1.3- Dipolar cycloadditions asymmetric reaction selectivity

3- Vinylindole, cycloaddition reactions asymmetric Diels-Alder reaction

Asymmetric 4+2] cycloaddition

Asymmetric Cycloaddition Reactions Catalyzed by Cinchona-Based Primary Amines

Asymmetric cycloaddition reaction catalysts

Asymmetric cycloaddition reaction catalyzed

Asymmetric cycloadditions

Asymmetric epoxidation 3 + 2] cycloaddition reactions

Asymmetric organocatalysts cycloaddition reactions

Asymmetric reaction tandem cycloaddition

Asymmetric reactions 1,3-dipolar cycloaddition selectivity

Asymmetric reactions 1,3-dipolar cycloadditions

Asymmetric reactions Diels-Alder cycloaddition

Asymmetric reactions catalytic 1,3-dipolar cycloadditions

Asymmetric reactions nitrile oxide cycloadditions, diastereoselectivity

Asymmetric synthesis 3 + 2] cycloaddition reactions

Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions

Catalytic Asymmetric Cycloaddition Reactions

Cycloaddition asymmetric reaction with nitrones

Cycloaddition reactions asymmetric induction

Dipolarophiles asymmetric cycloaddition reactions, chiral

Intramolecular cycloadditions asymmetric reactions, diastereoselectivity

© 2024 chempedia.info