Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glycols transesterification

Glycols may undergo intramolecular cyclization or cycHcaHy condense with other molecules to form a number of ring stmctures. Transesterification of carbonates with ethylene glycol produces ethylene carbonate [96-49-1] (eq. 4). Numerous materials catalyze carbonate transesterifications. [Pg.357]

Esters. Neopentyl glycol diesters are usually Hquids or low melting soflds. Polyesters of neopentyl glycol, and in particular unsaturated polyesters, are prepared by reaction with polybasic acids at atmospheric pressure. High molecular weight linear polyesters (qv) are prepared by the reaction of neopentyl glycol and the ester (usually the methyl ester) of a dibasic acid through transesterification (37—38). The reaction is usually performed at elevated temperatures, in vacuo, in the presence of a metallic catalyst. [Pg.373]

Cychc carbonates are prepared in satisfactory quaUty for anionic polymerization by catalyzed transesterification of neopentyl glycol with diaryl carbonates, followed by tempering and depolymerization. Neopentyl carbonate (5,5-dimethyl-1,3-dioxan-2-one) (6) prepared in this manner has high purity (99.5%) and can be anionically polymerized to polycarbonates with mol wt of 35,000 (39). [Pg.373]

Methylphenol is converted to 6-/ f2 -butyl-2-methylphenol [2219-82-1] by alkylation with isobutylene under aluminum catalysis. A number of phenoHc anti-oxidants used to stabilize mbber and plastics against thermal oxidative degradation are based on this compound. The condensation of 6-/ f2 -butyl-2-methylphenol with formaldehyde yields 4,4 -methylenebis(2-methyl-6-/ f2 butylphenol) [96-65-17, reaction with sulfur dichloride yields 4,4 -thiobis(2-methyl-6-/ f2 butylphenol) [96-66-2] and reaction with methyl acrylate under base catalysis yields the corresponding hydrocinnamate. Transesterification of the hydrocinnamate with triethylene glycol yields triethylene glycol-bis[3-(3-/ f2 -butyl-5-methyl-4-hydroxyphenyl)propionate] [36443-68-2] (39). 2-Methylphenol is also a component of cresyHc acids, blends of phenol, cresols, and xylenols. CresyHc acids are used as solvents in a number of coating appHcations (see Table 3). [Pg.67]

Propylene oxide and carboxyUc acids ia equimolar ratios produce monoesters of propylene glycol. Higher ratios of oxide to acid produce polypropylene glycol monoesters. In the presence of basic catalysts these monoesters can undergo transesterification reactions that yield a product mixture of propylene glycols, monoesters, and diesters (57,60). [Pg.135]

MetlylEsters. The addition product of two moles of TYZOR TPT and one mole of ethylene glycol, GLY—TI, can be used as a transesterification catalyst for the preparation of methyl esters. The low solubility of tetramethyl titanate has prevented the use of them as a catalyst for methyl ester preparation (488). [Pg.162]

Polyester Polyols. Initially polyester polyols were the preferred raw materials for polyurethanes, but in the 1990s the less expensive polyether polyols dominate the polyurethane market. Inexpensive aromatic polyester polyols have been introduced for rigid foam appHcations. These are obtained from residues of terephthaHc acid production or by transesterification of dimethyl terephthalate (DMT) or poly(ethylene terephthalate) (PET) scrap with glycols. [Pg.347]

Low molecular weight PET and PBT resins are made by melt processes. For higher molecular weight resins, both melt processes or soHd-state polymerization are used. Although terephthaHc acid can be directly esterified, the most common process involves transesterification of dimethyl terephthalate with ethylene glycol or 1,4-butanediol in the presence of trace amounts of metal ion catalysts (67,68). [Pg.267]

On the basis of bulk production (10), poly(ethylene terephthalate) manufacture is the most important ester producing process. This polymer is produced by either the direct esterification of terephthaHc acid and ethylene glycol, or by the transesterification of dimethyl terephthalate with ethylene glycol. In 1990, poly(ethylene terephthalate) manufacture exceeded 3.47 x 10 t/yr (see Polyesters). Dimethyl terephthalate is produced by the direct esterification of terephthaHc acid and methanol. [Pg.374]

This process differs from the direct esterification and the transesterification routes in that only ethylene glycol is released. In the former two routes, water or methanol are coproduced and the excess glycol released. [Pg.362]

PET is the polyester of terephthalic acid and ethylene glycol. Polyesters are prepared by either direct esterification or transesterification reactions. In the direct esterification process, terephthalic acid is reacted with ethylene glycol to produce PET and water as a by-product. Transesterification involves the reaction of dimethyl terephthalate (DMT) with ethylene glycol in the presence of a catalyst (usually a metal carboxylate) to form bis(hydroxyethyl)terephthalate (BHET) and methyl alcohol as a by-product. In the second step of transesterification, BHET... [Pg.527]

PET waste has been used in the manufacture of terephthalic electroinsulation lacquers. Here PET is heated in a mixture of a triol and glycol at temperatures of 230-260°C followed by catalytic transesterification and distillation of low-molecular-weight products of degradation until a polyester with the required softening temperature (ca. 60-100°C) is obtained. [Pg.530]

The chemistry of the glycolysis of polyurethanes is complicated by the fact that there are additional groups in the polymer such as ureas, allophanates, and biurets, and die PURs may be crosslinked. In die presence of the appropriate glycols and at about 200°C, PURs undergo transesterification to form polyols. Under the same conditions, ureas undergo glycolysis to form urethanes and amines (Fig. 10.5). [Pg.535]

A proposed mechanism of PET glycolysis would be (1) glycol diffusion into die polymer (2) swelling of the polymer, which increases the rate of diffusion and (3) reaction (transesterification) of the glycol hydroxy group at an ester group in die polyester chain.24 Since it is a transesterification process, metal acetate salts are effective catalysts. [Pg.545]

Polybutylene terephdialate (PBT) has been produced from PET scrap by transesterification widi 1,4-butanediol.1 In die process, classified and cleaned polymer Bake from postconsumer PET bottles is reacted witit 1,4-butanediol in an extruder. PBT is used as an engineering plastic. Ethylene glycol and tetrahydrol uran produced as by-products are recovered by distillation. [Pg.545]

The effect of incorporating p-hydroxybenzoic acid (I) into the structures of various unsaturated polyesters synthesised from polyethylene terephthalate (PET) waste depolymerised by glycolysis at three different diethylene glycol (DEG) ratios with Mn acetate as transesterification catalyst, was studied. Copolyesters of PET modified using various I mole ratios showed excellent mechanical and chemical properties because of their liquid crystalline behaviour. The oligoesters obtained from the twelve modified unsaturated polyesters (MUP) were reacted with I and maleic anhydride, with variation of the I ratio with a view to determining the effect on mechanical... [Pg.31]

In our previous works[8,9] on the synthesis of various 5-membered cyclic carbonate, quaternary ammonium salts such as tetrabutylammonium halides showed excellent catalytic activities in relatively mild reaction conditions, under atmospheric pressure and below 140 U. hi this work, several kinds of quaternary ammonium salts have been used for the transesterification reactions of the ethylaie carbonate with methanol to DMC and ethylene glycol. [Pg.329]

DMC and EG were main products of the transesterification reaction. No by-product such as dimethyl ether and glycol monoethyl ether was observed in the resulting products. Only small peaks of ethylene oxide from the decomposition of EC could be detected at longer reaction time and at high temperature. [Pg.330]

In the synthesis of DMC fiom the transesterification of EC and methanol, quaternary ammonium salt catalysts showed good catalytic activity. The main byproduct was ethylene glycol. The quaternary salt with the cation of bulkier alkyl chain laigth and witii more nucleophilic anion showed better reactivity. Hi temperature and large amount of catalyst increased the conversion of EC. The EC conversion and DMC selectivity increased as the pressure of CO2 increased from 250 to 350 psig. [Pg.332]

Alkyl esters often show low reactivity for lipase-catalyzed transesterifications with alcohols. Therefore, it is difficult to obtain high molecular weight polyesters by lipase-catalyzed polycondensation of dialkyl esters with glycols. The molecular weight greatly improved by polymerization under vacuum to remove the formed alcohols, leading to a shift of equilibrium toward the product polymer the polyester with molecular weight of 2 x 10" was obtained by the lipase MM-catalyzed polymerization of sebacic acid and 1,4-butanediol in diphenyl ether or veratrole under reduced pressure. ... [Pg.213]

S (2)-hydroxy-3-butenenitrile from acrolein and HCN trans hydrocyanation using, for instance, acetone cyanohydrin Hydrolysis of nitriles to amides, e.g. acrylonitrile to acrylamide Isomerization of glucose to fructose Esterifications and transesterifications Interesterify positions 1 and 3 of natural glycerides Oxidation of glucose to gluconic acid, glycolic acid to glyoxalic acid... [Pg.158]

Unactivated esters, typically alkyl esters, often show low reactivity toward lipase catalyst for transesterifications. In the case of the lipase-catalyzed polycondensation of dialkyl esters with glycols, the polymer of high molecular weight was not obtained. The molecular weight improved when vacuum conditions were used Mw reached more than 2 x 104 in the combination of diethyl sebacate and 1,4-butanediol catalyzed by lipase MM [30]. [Pg.243]

These materials are segmented copolyether esters formed by the melt transesterification of dimethyl terephthalate, poly(tetramethylene ether) glycol and 1,4-butane diol. As with the thermoplastic polyurethanes, one can describe a hard segment and a soft segment, the hard segments forming crystalline areas which act as pseudocrosslinks . [Pg.121]

Transesterification is a crucial step in several industrial processes such as (i) production of higher acrylates from methylmethacrylate (for applications in resins and paints), (ii) polyethene terephthalate (PET) production from dimethyl terephthalate (DMT) and ethene glycol (in polyester manufacturing),... [Pg.132]

The Suzuki coupling of soluble polyethylene glycol (PEG)-bound bromothiophene 71 and p-formylphenylboronic acid provided biaryl 72 [56]. Due to the high solubilizing power of PEG, the reaction was conducted as a liquid-phase synthesis. Treatment of 72 with o-pyridinediaminc resulted in a two-step-one-pot heterocyclization through an imine intermediate. Nitrobenzene served as an oxidant in the ring closure step. Finally, transesterification with NaOMe in MeOH resulted in l//-imidazole[4,5-e]pyridine 73. [Pg.244]

The thermal requirements for pigments which are targeted for PETP melt extrusion are particularly severe. However, it is important to consider the individual conditions at the various stages of polymer coloration. Pigments, for instance, which are added during the so-called condensation process in a glycol dispersion prior to transesterification or condensation in the autoclave, are exposed to temperatures between 240 and 290°C for 5 to 6 hours [43]. These harsh conditions are only tolerated by very few polycyclic pigments, primarily by representatives of the quinacridone, copper phthalocyanine, naphthalenetetracarboxylic acid, and pery-lene tetracarboxylic acid series. [Pg.178]


See other pages where Glycols transesterification is mentioned: [Pg.253]    [Pg.22]    [Pg.253]    [Pg.22]    [Pg.327]    [Pg.333]    [Pg.359]    [Pg.362]    [Pg.487]    [Pg.314]    [Pg.351]    [Pg.45]    [Pg.532]    [Pg.543]    [Pg.544]    [Pg.546]    [Pg.567]    [Pg.31]    [Pg.79]    [Pg.215]    [Pg.216]    [Pg.146]    [Pg.1083]    [Pg.91]    [Pg.135]    [Pg.339]    [Pg.272]   
See also in sourсe #XX -- [ Pg.286 ]




SEARCH



Transesterifications

© 2024 chempedia.info