Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization, glycerol

Glycerol polymerization in basic medium is assumed to occur via an Sn 2-type mechanism, in which the basic site (agent) weakens the glycerol O-H bond, thus increasing the nucleophilicity of the oxygen atom involved, allowing it to exert a nucleophilic attack on an accessible carbon atom of a second glycerol molecule (Scheme 11.2) [25]. [Pg.226]

Properties. Antimony pentafluoride [7783-70-2], SbF, is a colorless, hygroscopic, very viscous liquid that fumes ia air. Its viscosity at 20°C is 460 mPa-s(=cP) which is very close to the value for glycerol. The polymerization of high purity SbF at ambient temperature can be prevented by addition of 1% anhydrous hydrogen fluoride, which can be removed by distillation prior to the use of SbF. The pure product melts at 7°C (11), boils at 142.7°C,... [Pg.150]

Alkyd resins are produced by reaction of a polybasic acid, such as phthaUc or maleic anhydride, with a polyhydric alcohol, such as glycerol, pentaerythritol, or glycol, in the presence of an oil or fatty acid. The resulting polymeric material can be further modified with other polymers and chemicals such as acryhcs, siUcones, and natural oils. On account of the broad selection of various polybasic acids, polyhydric alcohols, oils and fatty acids, and other modifying ingredients, many different types of alkyd resins can be produced that have a wide range of coating properties (see Alkyd resins). [Pg.541]

Starters. Nearly any compound having an active hydrogen can be used as starter (initiator) for the polymerization of PO. The common types are alcohols, amines, and thiols. Thus in Figure 2 ROH could be RNH2 or RSH. The fiinctionahty is derived from the starter, thus glycerol results in a triol. Some common starters are shown in Table 4. The term starter is preferred over the commonly used term initiator because the latter has a slightly different connotation in polymer chemistry. Table 5 Hsts some homopolymer and copolymer products from various starters. [Pg.351]

By substituting paraldehyde for glycerol, 2-methylquinoline [27601-00-9] may be synthesized. The Skraup synthesis is regarded as an example of the broader Doebner-von Miller synthesis. In the case of the Skraup synthesis, the glycerol undergoes an acid-catalyzed dehydration to provide a small concentration of acrolein that is the reactive species. If acrolein itself is used as a reactant, it would polymerize. Crotonaldehyde is the reactive intermediate in the Doebner-von Miller synthesis (28). [Pg.230]

LB Films of Polymeric Amphiphile. Since the first successful deposition of a polymeric LB film (61), there have been a large number of studies examining different stmctural parameters on the transferabiHty and stabiHty of the polymeric LB films (4). One interesting idea for polymers for LB films is the use of a spacer group (mosdy hydrophilic) to decouple the motion of the polymer from that of the Hpid membrane (62,63). Monolayers from a poljmier (10) having hydrophilic phosphate groups and a tetraethylene oxide spacer were used to link a glycerol diether to the polymer chain (63). [Pg.535]

Polymeric Calcium Phosphate Cements. Aqueous solutions of polymers such as poly(acryHc acid), poly(vinyl alcohol), gelatin, etc, and/or autopolymerizable monomer systems, eg, 2-hydroxyethyl methacrylate, glycerol dimethacrylate, calcium dimethacrylate, etc, have been used as Hquid vehicles (41,42,76) for the self-setting calcium phosphate cement derived from tetracalcium phosphate and dicalcium phosphate [7757-93-9J. [Pg.474]

The most commonly used combination of chemicals to produce a polyacrylamide gel is acrylamide, bis acrylamide, buffer, ammonium persulfate, and tetramethylenediarnine (TEMED). TEMED and ammonium persulfate are catalysts to the polymerization reaction. The TEMED causes the persulfate to produce free radicals, causing polymerization. Because this is a free-radical driven reaction, the mixture of reagents must be degassed before it is used. The mixture polymerizes quickly after TEMED addition, so it should be poured into the gel-casting apparatus as quickly as possible. Once the gel is poured into a prepared form, a comb can be appHed to the top portion of the gel before polymerization occurs. This comb sets small indentations permanently into the top portion of the gel which can be used to load samples. If the comb is used, samples are then typically mixed with a heavier solution, such as glycerol, before the sample is appHed to the gel, to prevent the sample from dispersing into the reservoir buffer. [Pg.182]

Quinolines substituted at the pyridine ring may be obtained by using a substituted a ,/3-unsaturated aldehyde or ketone instead of the glycerol as starting material. However often a large amount of the carbonyl component polymerizes under the reaction conditions. [Pg.262]

Polymerization in aqueous solution of acrylamide can also be fulfilled in thin layers (up to 20 mm) applied on a steel plate or a traveling steel band. Polymerization is initiated by persulfates, redox system, UV or y radiation. Polymerization proceeds in isothermal conditions as the heat of polymerization is dissipated in the environment and, additionally, absorbed by the steel carrier. Nonadhesion of the polymer to the carrier is ensured by the addition of glycerol to isopropyl alcohol or by precoating the steel band with a film based on fluor-containing polymers. This makes polymerization possible at a high concentration of the monomer (20-45%) and in a wider process temperature range. This film of polyacrylamide is removed from the band, crushed, dried, and packed. [Pg.66]

Propylene can be polymerized alone or copolymerized with other monomers such as ethylene. Many important chemicals are based on propylene such as isopropanol, allyl alcohol, glycerol, and acrylonitrile. Chapter 8 discusses the production of these chemicals. U.S. production of proplylene was approximately 27.5 billion lbs in 1997. ... [Pg.34]

Paraplex. A trademark for a group of alkyd type polymeric materials known as polyester resins. These resins are primarily long chain polybasic acids esterified with polyhydric alcohols such as glycol sebacate, glycerol, or ethylene glycol. Some are oil-modified while others are unmodified polyesters... [Pg.489]

A star copolymer (SCP) of PCLA was synthesized by Younes and coworkers. This kind of SCP PCLA elastomer was also synthesized in two steps. First, the small molecular SCP was produced by ring-opening polymerization of s-caprolactone (s-CL) with glycerol as initiator and stannous 2-ethyUiexanoate as catalyst. Second, the living SCP was further reacted with different ratios of a cross-linking monomer, such as 2,2-bis(s-CL-4-yl)-propane (BCP) and s-CL. The SCP elastomers had very low glass transition temperature (—32°C). It was reported that the SCPs were soft and weak with physical properties similar to those of natural bioelastomers such as elastin. A logarithmic decrease in each tensile property with time was observed in this SCP PCLA. [Pg.229]

Initiation of stannous octoate-catalyzed copolymerization of e-caprolactone with glycerol was used to prepare a series of trifunctional hydroxy-end blocked oligomers, which were then treated with hexane-1,6-diisocyanate to form elastomeric polyesterurethanes with different crosslink densities (49). Initiation of e-caprolactone polymerization with a hydroxypropyl-terminated polydimethylsiloxane in the presence of dibutyl tin dilaurate has been used to prepare a polyester-siloxane block copolymer (Fig. 4) (50). [Pg.80]

The highlighted section reacts with water in a reverse condensation reaction to give the monomer that polymerizes with glycerol. [Pg.971]

In the wine industry, FTIR has become a useful technique for rapid analysis of industrial-grade glycerol adulteration, polymeric mannose, organic acids, and varietal authenticity. Urbano Cuadrado et al. (2005) studied the applicability of spectroscopic techniques in the near- and mid-infrared frequencies to determine multiple wine parameters alcoholic degree, volumic mass, total acidity, total polyphenol index, glycerol, and total sulfur dioxide in a much more efficient approach than standard and reference methods in terms of time, reagent, and operation errors. [Pg.497]

How the aliphatic monomers are incorporated into the suberin polymer is not known. Presumably, activated co-hydroxy acids and dicarboxylic acids are ester-ified to the hydroxyl groups as found in cutin biosynthesis. The long chain fatty alcohols might be incorporated into suberin via esterification with phenylpro-panoic acids such as ferulic acid, followed by peroxidase-catalyzed polymerization of the phenolic derivative. This suggestion is based on the finding that ferulic acid esters of very long chain fatty alcohols are frequently found in sub-erin-associated waxes. The recently cloned hydroxycinnamoyl-CoA tyramine N-(hydroxycinnamoyl) transferase [77] may produce a tyramide derivative of the phenolic compound that may then be incorporated into the polymer by a peroxidase. The glycerol triester composed of a fatty acid, caffeic acid and a>-hydroxy acid found in the suberin associated wax [40] may also be incorporated into the polymer by a peroxidase. [Pg.27]

PLLA-b-PEO)3 star-block copolymers have been synthesized by a combination of ROP and post-polymerization reactions [152], as depicted in Scheme 76. Glycerol was employed for the synthesis of a 3-arm PLLA star... [Pg.87]

The distillation residue contains mainly glycerol however, condensation and polymerization reactions also took place indicated by coloration of the liquid. These reactions might increase viscosity and decrease heat transfer considerably. [Pg.438]


See other pages where Polymerization, glycerol is mentioned: [Pg.3184]    [Pg.161]    [Pg.339]    [Pg.3184]    [Pg.161]    [Pg.339]    [Pg.64]    [Pg.299]    [Pg.319]    [Pg.417]    [Pg.348]    [Pg.350]    [Pg.268]    [Pg.292]    [Pg.35]    [Pg.83]    [Pg.134]    [Pg.478]    [Pg.10]    [Pg.819]    [Pg.19]    [Pg.538]    [Pg.174]    [Pg.220]    [Pg.221]    [Pg.221]    [Pg.222]    [Pg.46]    [Pg.47]    [Pg.354]    [Pg.93]    [Pg.369]    [Pg.16]    [Pg.246]    [Pg.256]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Glycerol Ester of Polymerized Rosin

© 2024 chempedia.info