Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Parameters alcohols

Parameter r measures the number of segments of a molecule for the term v in the Flory-Huggins equation. Parameters q, and are surface areas that are interchangeable for all except strongly hydrogen-bonded water and alcohols. Parameters r, q, and are pure-component molecular structure parameters. The combinatorial is dependent only on pure-component parameters. The residual depends additionally on binary interaction parameters and x ,... [Pg.342]

SIZE PARAMETER 0-PRfME fOPI FOR MATER AND ALCOHOLS... [Pg.149]

SAN resins show considerable resistance to solvents and are insoluble in carbon tetrachloride, ethyl alcohol, gasoline, and hydrocarbon solvents. They are swelled by solvents such as ben2ene, ether, and toluene. Polar solvents such as acetone, chloroform, dioxane, methyl ethyl ketone, and pyridine will dissolve SAN (14). The interactions of various solvents and SAN copolymers containing up to 52% acrylonitrile have been studied along with their thermodynamic parameters, ie, the second virial coefficient, free-energy parameter, expansion factor, and intrinsic viscosity (15). [Pg.192]

In methacrylic ester polymers, the glass-transition temperature, is influenced primarily by the nature of the alcohol group as can be seen in Table 1. Below the the polymers are hard, brittle, and glass-like above the they are relatively soft, flexible, and mbbery. At even higher temperatures, depending on molecular weight, they flow and are tacky. Table 1 also contains typical values for the density, solubiHty parameter, and refractive index for various methacrylic homopolymers. [Pg.259]

The amino group is readily dia2oti2ed in aqueous solution, and this reaction forms a basis for the assay of sulfas. Aldehydes also react to form anils, and the yellow product formed with 4-(dimethylamino)hen2a1dehyde can be used for detection in thiu-layer and paper chromatography. Chromatographic retention values have been deterrnined in a number of thiu layer systems, and have been used as an expression of the lipophilic character of sulfonamides (23). These values have corresponded well with Hansch lipophilic parameters determined in an isobutyl alcohol—water system. [Pg.466]

The thermal glass-transition temperatures of poly(vinyl acetal)s can be determined by dynamic mechanical analysis, differential scanning calorimetry, and nmr techniques (31). The thermal glass-transition temperature of poly(vinyl acetal) resins prepared from aliphatic aldehydes can be estimated from empirical relationships such as equation 1 where OH and OAc are the weight percent of vinyl alcohol and vinyl acetate units and C is the number of carbons in the chain derived from the aldehyde. The symbols with subscripts are the corresponding values for a standard (s) resin with known parameters (32). The formula accurately predicts that resin T increases as vinyl alcohol content increases, and decreases as vinyl acetate content and aldehyde carbon chain length increases. [Pg.450]

The most common a2eotropes (3,4) formed by the butanols are given in Table 2. Butyl alcohol Hquid vapor pressure/temperature responses (5,6), which are important parameters in direct solvent appHcations, are presented in Figure 1. Similarly, viscosity/temperature plots (1) for the four butanols are presented in Figure 2. [Pg.356]

As may be expected of an amorphous polymer in the middle range of the solubility parameter table, poly(methyl methacrylate) is soluble in a number of solvents with similar solubility parameters. Some examples were given in the previous section. The polymer is attacked by mineral acids but is resistant to alkalis, water and most aqueous inorganic salt solutions. A number of organic materials although not solvents may cause crazing and cracking, e.g. aliphatic alcohols. [Pg.409]

The solubility parameter is about 19.2MPa and being amorphous they dissolve in such solvents as tetrahydrofuran, mesityl oxide, diacetone alcohol and dioxane. Since the main chain is composed of stable C—C and C—O—C linkages the polymer is relatively stable to chemical attack, particularly from acids and alkalis. As already mentioned, the pendant hydroxyl groups are reactive and provide a site for cross-linking. [Pg.607]

Table 6. Other parameters/operating conditions affecting canister performance and design Recirculating Fuel System Non-Recirculating Fuel System Single vs. Multiple Carbon Beds Gasoline vs. Alcohol-based Fuels Liquid Fuel Ingestion into Carbon Bed Water Ingestion into Carbon Bed Dispensed Fuel Temperature... Table 6. Other parameters/operating conditions affecting canister performance and design Recirculating Fuel System Non-Recirculating Fuel System Single vs. Multiple Carbon Beds Gasoline vs. Alcohol-based Fuels Liquid Fuel Ingestion into Carbon Bed Water Ingestion into Carbon Bed Dispensed Fuel Temperature...
The non-bonded interaction energy, the van-der-Waals and electrostatic part of the interaction Hamiltonian are best determined by parametrizing a molecular liquid that contains the same chemical groups as the polymers against the experimentally measured thermodynamical and dynamical data, e.g., enthalpy of vaporization, diffusion coefficient, or viscosity. The parameters can then be transferred to polymers, as was done in our case, for instance in polystyrene (from benzene) [19] or poly (vinyl alcohol) (from ethanol) [20,21]. [Pg.487]

From this discussion, the limitations of the force field should have become clear. There is no such thing as a universal force field which describes every system in every condition. The force field is a function with few adjustable parameters and can, therefore, not be expected to reproduce all properties of all chemical species under all circumstances. This means, for example, that an OH group in an aliphatic alcohol will have to be treated differently from a phenolic OH or from the OH of a carboxylic acid group. Similarly, the density and temperature window of a force field is often limited [22]. [Pg.487]

The rehability of these analytical methods may be questionable when chemical shift differences of derivatives are of the same magnitude as variations encountered from solvent, concentration, and temperature influences. Reported fluorine chemical shift ranges for tnfluoroacetylated alcohols (1 ppm), p-fluorobenzoylated sterols (1 ppm), and p-fluorobenzoylated ammo acids (0.5 ppm) are quite narrow, and correct interpretation of the fluonne NMR spectra of these denvatized mixmres requires strict adherence to standardized sampling procedure and NMR parameters. [Pg.1069]

The parameterization process may be done sequentially or in a combined fashion. In the sequential method a certain class of compound, such as hydrocarbons, is parameterized first. These parameters are held fixed, and a new class of compound, for example alcohols and ethers, is then parameterized. Tins method is in line with the basic assumption of force fields parameters are transferable. The advantage is that only a fairly small number of parameters are fitted at a time. The ErrF is therefore a relatively low-dimensional function, and one can be reasonably certain that a good minimum has been found (although it may not be the global minimum). The disadvantage is that the final set of parameters necessarily provides a poorer fit (as defined from the value of the ErrF) than if all the parameters are fitted simultaneously. [Pg.33]

A number of reaction variables or parameters have been examined. Catalyst solutions should not be prepared and stored since the resting catalyst is not stable to long term storage. However, the catalyst solution must be aged prior to the addition of allylic alcohol or TBHP. Diethyl tartrate and diisopropyl tartrate are the ligands of choice for most allylic alcohols. TBHP and cumene hydroperoxide are the most commonly used terminal oxidant and are both extremely effective. Methylene chloride is the solvent of choice and Ti(i-OPr)4 is the titanium precatalyst of choice. Titanium (IV) t-butoxide is recommended for those reactions in which the product epoxide is particularly sensitive to ring opening from alkoxide nucleophiles. ... [Pg.54]

Typical normal-phase operations involved combinations of alcohols and hexane or heptane. In many cases, the addition of small amounts (< 0.1 %) of acid and/or base is necessary to improve peak efficiency and selectivity. Usually, the concentration of polar solvents such as alcohol determines the retention and selectivity (Fig. 2-18). Since flow rate has no impact on selectivity (see Fig. 2-11), the most productive flow rate was determined to be 2 mL miiT. Ethanol normally gives the best efficiency and resolution with reasonable back-pressures. It has been reported that halogenated solvents have also been used successfully on these stationary phases as well as acetonitrile, dioxane and methyl tert-butyl ether, or combinations of the these. The optimization parameters under three different mobile phase modes on glycopeptide CSPs are summarized in Table 2-7. [Pg.52]

Paine et al. [85] extensively studied the effect of solvent in the dispersion polymerization of styrene in the polar media. In their study, the dispersion polymerization of styrene was carried out by changing the dispersion medium. They used hydroxypropyl cellulose (HPC) as the stabilizer and its concentration was fixed to 1.5% within a series of -alcohols tried as the dispersion media. The particle size increased from only 2.0 /itm in methanol to about 8.3 /itm in pentanol, and then decreased back to 1 ixm in octadecanol. The particle size values plotted against the Hansen solubility parameters... [Pg.206]

Figure 13 The variation of particle size with the Hansen solubility parameter of the n-alcohols. (Adapted from Ref. 85 with the permission of John Wiley Sons, Inc.)... Figure 13 The variation of particle size with the Hansen solubility parameter of the n-alcohols. (Adapted from Ref. 85 with the permission of John Wiley Sons, Inc.)...

See other pages where Parameters alcohols is mentioned: [Pg.164]    [Pg.164]    [Pg.2]    [Pg.42]    [Pg.44]    [Pg.384]    [Pg.148]    [Pg.914]    [Pg.316]    [Pg.316]    [Pg.366]    [Pg.134]    [Pg.425]    [Pg.183]    [Pg.72]    [Pg.273]    [Pg.467]    [Pg.254]    [Pg.461]    [Pg.502]    [Pg.342]    [Pg.188]    [Pg.42]    [Pg.603]    [Pg.340]    [Pg.45]    [Pg.70]    [Pg.271]    [Pg.212]    [Pg.301]    [Pg.206]    [Pg.206]    [Pg.207]   
See also in sourсe #XX -- [ Pg.128 , Pg.199 ]




SEARCH



Alcohol solubility parameter

Alcoholic fermentation parameters

Alcohols, unsaturated solvent parameters

Arrhenius parameters with alcohols

Ethyl alcohol solubility parameter

Methyl alcohol solubility parameter

Vinyl alcohol structural parameters

© 2024 chempedia.info