Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

General catalytic process

In the real, hard world of industry, however, catalysts bring with them various disadvantages that must be considered against the benefits. Firstly, there is the cost of the catalyst. This can be broken down to raw material cost plus the cost of fabricating the catalyst. Both are important. For example, when the raw material is a precious metal (e.g. palladium) which is not recovered, the cost can be significant. However, if a relatively cheap metal is used (e.g. iron) with a multi-step catalyst preparation, then the catalyst can still have significant cost. [Pg.3]


There are three general catalytic processes that can be used to strip hydrogen from single carbon molecules. These processes are known as reforming reactions and they convert the hydrocarbon into a mixture known as synthesis gas , where hydrogen and carbon monoxide molecules contain the original fuel value. The principal reactions are ... [Pg.416]

The characteristic life time of a reaction is a measure of the time required after initiation for it to reach completion. This period is frequently related to the rate constant for the reaction in a veiy clear and specific way. Solutions to some of the common zero-, first- and second-order rate equations are presented in Table 9.5. Examples of zero- and first-order reactions are discussed in this section application of the second-order equations to general catalytic processes will be presented in the section on catalysis. The last column of Table 9.5 lists the relations between r, the characteristic life time of the reactant with respect to the chemical reaction, and the rate constant for the reaction. The meaning of the characteristic life time depends upon the order and reversibility of the reaction. [Pg.319]

Hydrodesulfurization belongs to the general catalytic process called hydrotreatment where heteroatoms are removed from the hydrocarbons... [Pg.5]

In general, it seems more reasonable to suppose that in chemisorption specific sites are involved and that therefore definite potential barriers to lateral motion should be present. The adsorption should therefore obey the statistical thermodynamics of a localized state. On the other hand, the kinetics of adsorption and of catalytic processes will depend greatly on the frequency and nature of such surface jumps as do occur. A film can be fairly mobile in this kinetic sense and yet not be expected to show any significant deviation from the configurational entropy of a localized state. [Pg.709]

Toluene disproportionation (TDP) is a catalytic process in which 2 moles of toluene are converted to 1 mole of xylene and 1 mole of benzene this process is discussed in greater detail herein. Although the mixed xylenes from TDP are generally more cosdy to produce than those from catalytic reformate or pyrolysis gasoline, thek principal advantage is that they are very pure and contain essentially no EB. [Pg.410]

Ethynylation of ketones is not cataly2ed by copper acetyUde, but potassium hydroxide has been found to be effective (180). In general, alcohols are obtained at lower temperatures and glycols at higher temperatures. Most processes use stoichiometric amounts of alkaU, but tme catalytic processes for manufacture of the alcohols have been described the glycols appear to be products of stoichiometric ethynylation only. [Pg.112]

Isomerization. Isomerization is a catalytic process which converts normal paraffins to isoparaffins. The feed is usually light virgin naphtha and the catalyst platinum on an alumina or zeoflte base. Octanes may be increased by over 30 numbers when normal pentane and normal hexane are isomerized. Another beneficial reaction that occurs is that any benzene in the feed is converted to cyclohexane. Although isomerization produces high quahty blendstocks, it is also used to produce feeds for alkylation and etherification processes. Normal butane, which is generally in excess in the refinery slate because of RVP concerns, can be isomerized and then converted to alkylate or to methyl tert-huty ether (MTBE) with a small increase in octane and a large decrease in RVP. [Pg.185]

In 1955, a team of research workers at General Electric developed the necessary high pressure equipment and discovered solvent—catalytic processes by which ordinary forms of carbon could be changed into diamond. [Pg.561]

Amination of phenoHc derivatives is limited to specially developed catalytic processes for aniline and y -toluidine (3). More general conditions apply to amination of naphthols by the Bucherer reaction. Important intermediates made by a Bucherer reaction include Tobias acid and gamma acid. [Pg.292]

L oss of Catalyst by Vapor Transport. The direct volatilisation of catalytic metals is generally not a factor in catalytic processes, but catalytic metal can be lost through formation of metal carbonyl oxides, sulfides, and hahdes in environments containing CO, NO, O2 and H2S, and halogens (24). [Pg.509]

Obviously, with the development of the first catalytic reactions in ionic liquids, the general research focus turned away from basic studies of metal complexes dissolved in ionic liquids. Today there is a clear lack of fundamental understanding of many catalytic processes in ionic liquids on a molecular level. Much more fundamental work is undoubtedly needed and should be encouraged in order to speed up the future development of transition metal catalysis in ionic liquids. [Pg.229]

The history of the development of a wide range of catalytic processes illustrates the generality of the points we have made in the previous sections to such an extent that we can sum up with a set of precepts for the improvement of routes to, and of processes for, the manufacture of chemical products. [Pg.241]

The general catalytic cycle for the coupling of aryl-alkenyl halides with alkenes is shown in Fig. 9.6. The first step in this catalytic cycle is the oxidative addition of aryl-alkenyl halides to Pd(0). The activity of the aryl-alkenyl halides still follows the order RI > ROTf > RBr > RC1. The olefin coordinates to the Pd(II) species. The coordinated olefin inserts into Pd—R bond in a syn fashion, p-Hydrogen elimination can occur only after an internal rotation around the former double bond, as it requires at least one /I-hydrogen to be oriented syn perpendicular with respect to the halopalladium residue. The subsequent syn elimination yields an alkene and a hydridopalladium halide. This process is, however, reversible, and therefore, the thermodynamically more stable (E)-alkene is generally obtained. Reductive elimination of HX from the hydridopalladium halide in the presence of a base regenerates the catalytically active Pd(0), which can reenter the catalytic cycle. The oxidative addition has frequently assumed to be the rate-determining step. [Pg.486]

Most studies of the effect of alkalis on the adsorption of gases on catalyst surfaces refer to CO, NO, C02, 02, H2 and N2, due to the importance of these adsorbates for numerous industrial catalytic processes (e.g. N2 adsorption in NH3 synthesis, NO reduction by CO). Thus emphasis will be given on the interaction of these molecules with alkali-modified surfaces, especially transition metal surfaces, aiming to the identification of common characteristics and general trends. [Pg.35]

Much of the recent interest in insertion reactions undeniably stems from the emphasis placed on development of homogeneous catalysis as a rational discipline. One or more insertion is involved in such catalytic processes as the hydroformylation (31) or the polymerization of olefins 26, 75) and isocyanides 244). In addition, many insertion reactions have been successfully employed in organic and organometallic synthesis. The research in this general area has helped systematize a large body of previously unrelated facts and opened new areas of chemistry for investigation. Heck 114) and Lappert and Prokai 161) provide a comprehensive compilation and a systematic discussion of a wide variety of insertion reactions in two relatively recent (1965 and 1967) reviews. [Pg.90]

Generally, the above transesterification reactions are catalyzed by strong acids or alkalis [1, 2]. In the homogeneous catalytic process by acids or alkalis, neutralization is required of the product. This post-treatment produces waste water, and increases equipment investment and production cost. Recently, more attention has been paid to the heterogeneous catalysis process [3] for an easier production process and to reduce pollution of the environment. [Pg.153]

The last equation is not independent of the others due to the site balance of Eq. (141) hence, in general, we have n-1 equations for a reaction containing n elementary steps. Note that steady state does not imply that surface concentrations are low. They just do not change with time. Hence, in the steady state approximation we can not describe time-dependent phenomena, but the approximation is sufficient to describe many important catalytic processes. [Pg.59]

A wide variety of solid materials are used in catalytic processes. Generally, the (surface) structure of metal and supported metal catalysts is relatively simple. For that reason, we will first focus on metal catalysts. Supported metal catalysts are produced in many forms. Often, their preparation involves impregnation or ion exchange, followed by calcination and reduction. Depending on the conditions quite different catalyst systems are produced. When crystalline sizes are not very small, typically > 5 nm, the metal crystals behave like bulk crystals with similar crystal faces. However, in catalysis smaller particles are often used. They are referred to as crystallites , aggregates , or clusters . When the dimensions are not known we will refer to them as particles . In principle, the structure of oxidic catalysts is more complex than that of metal catalysts. The surface often contains different types of active sites a combination of acid and basic sites on one catalyst is quite common. [Pg.94]


See other pages where General catalytic process is mentioned: [Pg.226]    [Pg.1]    [Pg.3]    [Pg.226]    [Pg.1]    [Pg.3]    [Pg.209]    [Pg.169]    [Pg.206]    [Pg.156]    [Pg.188]    [Pg.514]    [Pg.364]    [Pg.194]    [Pg.2094]    [Pg.2097]    [Pg.174]    [Pg.228]    [Pg.219]    [Pg.6]    [Pg.8]    [Pg.346]    [Pg.23]    [Pg.112]    [Pg.80]    [Pg.50]    [Pg.2]    [Pg.348]    [Pg.735]    [Pg.237]    [Pg.78]    [Pg.19]    [Pg.214]    [Pg.29]    [Pg.276]   


SEARCH



Catalytic processes

© 2024 chempedia.info