Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gel electrophoresis detection

Veloso, A. C. A., Teixeira, N., and Ferreira, I. M. P. L. V. O. (2002). Separation and quantification of the major casein fractions by reverse-phase high performance liquid chromatography and urea-polyacrylamide gel electrophoresis Detection of milk adulterations.. Chromatogr. A 967, 209-218. [Pg.212]

To more rapidly process these millions of pieces, the whole operation is done automatically, performing separations by capillary electrophoresis, which has higher resolving power and is faster than gel electrophoresis. Detection is done by passing a laser beam through the eluting drops at the ends of multiple capillaries. The public consortium has largely switched to this instrument as well (the ABI Model 3700). [Pg.703]

Most sample components analyzed with electrophoretic techniques are invisible to the naked eye. Thus methods have been developed to visualize and quantify separated compounds. These techniques most commonly involve chemically fixing and then staining the compounds in the gel. Other detection techniques can sometimes yield more information, such as detection using antibodies to specific compounds, which gives positive identification of a sample component either by immunoelectrophoretic or blotting techniques, or enhanced detection by combining two different electrophoresis methods in two-dimensional electrophoretic techniques. [Pg.183]

Eor example, the technique of Southern blotting was developed (68) for use with agarose gel electrophoresis of DNA fragments. Southern blots are designed to detect specific sequences of DNA. After electrophoresis is complete, the DNA is denatured and the single stranded DNA transferred to the specially prepared nitrocellulose paper. The nitrocellulose is then incubated with radioactive RNA or DNA complementary to those DNA sequences of interest. After the nitrocellulose has been sufftciendy incubated with the radioactive complementary DNA, autoradiography is used to identify the fragments of interest. [Pg.184]

Southern, E. M., 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98 503-517. The classic paper on die idendficadon of specific DNA sequences through hybridizadon widi unique probes. [Pg.424]

Classical gel electrophoresis has been used extensively for protein and nucleic acid purification and characterization [9, 10], but has not been used routinely for small molecule separations, other than for polypeptides. A comparison between TLC and electrophoresis reveals that while detection is usually accomplished off-line in both electrophoretic and TLC methods, the analyte remains localized in the TLC bed and the mobile phase is immediately removed subsequent to chromatographic development. In contrast, in gel electrophoresis, the gel matrix serves primarily as an anti-... [Pg.289]

The principal molecular constituent of thin filaments is actin. Actin has been highly conserved during the course of evolution and is present in all eukaryotes, including single-celled organisms such as yeasts. Actin was first extracted and purified from skeletal muscle, where it forms the thin filaments of sarcomeres. It also is the main contractile protein of smooth muscle. Refined techniques for the detection of small amounts of actin (e.g., immunofluorescence microscopy, gel electrophoresis, and EM cytochemistry) subsequently confirmed the presence of actin in a great variety of nonmuscle cells. Muscle and nonmuscle actins are encoded by different genes and are isoforms. [Pg.21]

This data led to the development of the original method of protecting the DNA from the damaging effects of UV radiation with a wavelength X = 254 nm for detection of the results of gel electrophoresis. It is demonstrated the benefits of the adding of the C6-AR in... [Pg.196]

Att eZcven y-cJuiin voA nts, discovered thus far, exhibit a change In electrophoretic mobility, and starch gel electrophoresis Is the recommended method for their detection. Quantitation of the variant can best be done by chromatography on columns of either DEAE-Sephadex or CM-Cellulose. The quantities of some variants In heterozygotes differ greatly. For Instance, the relative amount (expressed In %F /Fxotal) varies from 20-25% (F-Malta-I) to 10-15% (most Y C >aln variants) to 5-6%... [Pg.14]

The, chain voAiantS are characterized by the presence of two abnormal components, an abnormal Hb-F (02 /2) and an abnormal Hb-A (tt2 32) Of these two, the 02 2 component dominates and the 02 32 component Is often difficult to detect. The methods of choice are starch gel electrophoresis and anion-exchange chromatography using DEAE-Sephadex or DE-52 Cellulose. Chain analyses of these Isolated hemoglobin components will lead to a definitive Identification. [Pg.15]

The defnon6ttLOtion 0 -chain vaAijant6 In heterozygotes Is complicated by the presence of the large amount of Hb-F. Another obstacle Is the nearly Identical electrophoretic mobilities of Hb-A and the minor Hb-Fi component. Despite these difficulties, abnormalities such as AS, SS, AC, CC, SC, and others can readily be detected using cellulose acetate electrophoresis, starch gel electrophoresis, acid agar electrophoresis, and by CM-Cellulose microchromatography to be described In a separate section. [Pg.15]

Detection of Met(Ferrl-)Hemoglobins (Hb-M) Detection of these variants can be made by starch gel electrophoresis of the ferrl-derlvatlves of hemoglobins In red cell hemolysate using a phosphate buffer, pH 7 0 (25) However, some methemoglobln variants can be separated from normal Hb-A at pH 9 0 (40) ... [Pg.34]

Middle panel Cell wall proteins were isolated, 10 pgm of each resolved by non-denaturing polyacrylamide gel electrophoresis and PGl and PG2 isoforms detected by activity staining. [Pg.250]

There are many proteins in the human body. A few hundreds of these compounds can be identified in urine. The qualitative determination of one or a series of proteins is performed by one of the electrophoresis techniques. Capillary electrophoresis can be automated and thus more quantified (Oda et al. 1997). Newer techniques also enable quantitative determination of proteins by gel electrophoresis (Wiedeman and Umbreit 1999). For quantitative determinations, the former method of decomposition into the constituent amino acids was followed by an automated spectropho-tometric measurement of the ninhydrin-amino add complex. Currently, a number of methods are available, induding spectrophotometry (Doumas and Peters 1997) and, most frequently, ELISAs. Small proteins can be detected by techniques such as electrophoresis, isoelectric focusing, and chromatography (Waller et al. 1989). These methods have the advantage of low detection limits. Sometimes, these methods have a lack of specifidty (cross-over reactions) and HPLC techniques are increasingly used to assess different proteins. The state-of-the-art of protein determination was mentioned by Walker (1996). [Pg.208]

T. Vallaeys, E. Topp, G. Muyzer, V. Macheret, G. Laguerre, A. Rigaud, and G. Soulas, Evaluation of denaturing gradient gel electrophoresis in the detection of I6S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol. Ecol. 24 279 (1997). [Pg.259]

A variety of formats and options for different types of applications are possible in CE, such as micellar electrokinetic chromatography (MEKC), isotachophoresis (ITP), and capillary gel electrophoresis (CGE). The main applications for CE concern biochemical applications, but CE can also be useful in pesticide methods. The main problem with CE for residue analysis of small molecules has been the low sensitivity of detection in the narrow capillary used in the separation. With the development of extended detection pathlengths and special optics, absorbance detection can give reasonably low detection limits in clean samples. However, complex samples can be very difficult to analyze using capillary electrophoresis/ultraviolet detection (CE/UV). CE with laser-induced fluorescence detection can provide an extraordinarily low LOQ, but the analytes must be fluorescent with excitation peaks at common laser wavelengths for this approach to work. Derivatization of the analytes with appropriate fluorescent labels may be possible, as is done in biochemical applications, but pesticide analysis has not been such an important application to utilize such an approach. [Pg.781]

Jackson, P., The use of polyacrylamide-gel electrophoresis for the high-reso-lution separation of reducing saccharides labeled with the fluorophore 8-ami-nonaphthalene-l,3,6-trisulfonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device, Biochem. ]., 270, 705, 1990. [Pg.426]


See other pages where Gel electrophoresis detection is mentioned: [Pg.190]    [Pg.392]    [Pg.708]    [Pg.190]    [Pg.392]    [Pg.708]    [Pg.229]    [Pg.440]    [Pg.251]    [Pg.297]    [Pg.536]    [Pg.290]    [Pg.1028]    [Pg.273]    [Pg.424]    [Pg.173]    [Pg.180]    [Pg.190]    [Pg.193]    [Pg.210]    [Pg.25]    [Pg.28]    [Pg.402]    [Pg.305]    [Pg.615]    [Pg.328]    [Pg.348]    [Pg.92]    [Pg.155]    [Pg.408]    [Pg.337]    [Pg.386]    [Pg.411]    [Pg.411]    [Pg.414]   
See also in sourсe #XX -- [ Pg.62 , Pg.68 , Pg.83 ]




SEARCH



Gel electrophoresis

© 2024 chempedia.info