Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functionalized organic microspheres

Soapless seeded emulsion copolymerization has been proposed as an alternative method for the preparation of uniform copolymer microspheres in the submicron-size range [115-117]. In this process, a small part of the total monomer-comonomer mixture is added into the water phase to start the copolymerization with a lower monomer phase-water ratio relative to the conventional direct process to prevent the coagulation and monodispersity defects. The functional comonomer concentration in the monomer-comonomer mixture is also kept below 10% (by mole). The water phase including the initiator is kept at the polymerization temperature during and after the addition of initial monomer mixture. The nucleation takes place by the precipitation of copolymer macromolecules, and initially formed copolymer nuclei collide and form larger particles. After particle formation with the initial lower organic phase-water ratio, an oligomer initiated in the continuous phase is... [Pg.217]

The uniform polymeric microspheres in submicron-or micron-size range can also be prepared as seed particles by the soapless emulsion or dispersion polymerization of a hydrophobic monomer like styrene. The uniform seed particles are swollen with the organic phase including functional comonomer, monomer, and oil-soluble initiator at a low temperature in an aqueous... [Pg.217]

Although the vomeronasal system is specialized to detect stimuli in a liquid environment, it probably is not functional in utero, at least in mice. Fluorescent microspheres were not taken up by the vomeronasal organ as the access canal is not open yet in utero. In rats, by contrast, the canal is open before birth and the microspheres can be taken up. The olfactory epithelium of the main olfactory system plays a greater role prenatally, as evidenced by the uptake of radiolabeled 2-deoxyglucose (Coppola and Coltrane 1994). Fetal mice respond to amyl acetate and isovaleric acid delivered into the nasal cavity through a tiny cannula (Coppola, 2001). In both rats and mice, the main olfactory system, and not the vomeronasal system, appears to mediate prenatal olfaction (Coppola, 2001). [Pg.234]

In addition [103,104], a new type of composite that combines DNA with silica components via a sol-gel method was described. The DNA-silica hybrid material is advantageous with respect to its mechanical and chemical stability in both aqueous and organic solvents. Similar to the previously described hybrids, the specific functions of the DNA molecules were retained and maintained the DNA-silica hybrid materials adsorb DNA-interactive chemicals from diluted aqueous solution. In another series of reports [105-109], DNA-loaded PSf microspheres were fabricated by means of a liquid-liquid phase separation technique. The release rate of DNA from the microspheres can be controlled by manipulating the microsphere structure. Increasing the polymer concentration causes lower porosity and smaller pores on the outer surface of the microspheres, and leads to a low release rate of DNA from the microspheres. The DNA-loaded PSf microspheres could effectively accumulate harmful DNA-intercalating pollutants and endocrine disruptors, as described in previous reports. [Pg.170]

Most research into the study of dispersion polymerization involves common vinyl monomers such as styrene, (meth)acrylates, and their copolymers with stabilizers like polyvinylpyrrolidone (PVP) [33-40], poly(acrylic acid) (PAA) [18,41],poly(methacrylicacid) [42],or hydroxypropylcellulose (HPC) [43,44] in polar media (usually alcohols). However, dispersion polymerization is also used widely to prepare functional microspheres in different media [45, 46]. Some recent examples of these preparations include the (co-)polymerization of 2-hydroxyethyl methacrylate (HEMA) [47,48],4-vinylpyridine (4VP) [49], glycidyl methacrylate (GMA) [50-53], acrylamide (AAm) [54, 55], chloro-methylstyrene (CMS) [56, 57], vinylpyrrolidone (VPy) [58], Boc-p-amino-styrene (Boc-AMST) [59],andAT-vinylcarbazole (NVC) [60] (Table 1). Dispersion polymerization is usually carried out in organic liquids such as alcohols and cyclohexane, or mixed solvent-nonsolvents such as 2-butanol-toluene, alcohol-toluene, DMF-toluene, DMF-methanol, and ethanol-DMSO. In addition to conventional PVP, PAA, and PHC as dispersant, poly(vinyl methyl ether) (PVME) [54], partially hydrolyzed poly(vinyl alcohol) (hydrolysis=35%) [61], and poly(2-(dimethylamino)ethyl methacrylate-fo-butyl methacrylate)... [Pg.303]

The cationic palladium a-diimine complexes are remarkably functional-group tolerant. Ethylene polymerizations can be carried out in the presence of ethers, organic esters, and acids, but nitriles tend to inhibit polymerizations. In addition, polymerizations have been carried out in the presence of air and in the presence of an aqueous phase.Aqueous emulsion and suspension polymerizations using these catalysts have been developed as a route to microspheres of polymer for adhesives as well as for other applications.2 ° 2 Preparation of elastomers is often complicated by difficult solvent removal, so polymerizations in supercritical CO2 have been investigated. It is also possible to combine the activity of the palladium catalysts with other polymerization techniques such as living-free-radical polymerizations. One interesting observation is that the... [Pg.320]

KPS as initiator [163]. Liu et al. [164] started with bilayer oleic-acid-coated iron oxide nanoparticles and applied the combination of soap-free and seeded emulsion polymerization (Fig. 20a) to produce GMA-functionalized magnetic poly(MMA-DVB-GMA) microspheres. This was followed by modification of the PGMA shell with EDA to introduce amino groups that can react with the organic dye fiuorescein isothiocyanate and that impart multifunctional, photoluminescence, superparamag-netic and pH-responsive properties to the particles (Fig. 20b). [Pg.272]

Polymer spheres. Polystyrene microspheres have been used to get control over the final macropore properties of hierarchical SBA-15 silicas. They are introduced during the synthesis and are eventually removed by calcination at 823 K [131]. After organic functionalization with sulfonic acid moieties, the reactivity enhancement by macropores was demonstrated in the tricapryHn methanolysis reaction. [Pg.219]

Organic spheres are predominantly polymeric, consisting of synthetic or natural polymers. The field of polymeric nano- and microparticles is vast, comprising, for instance, latex particles for coatings, hollow particles for syntactic foams, and microcapsules for foaming and additive release. In addition, there are core-shell microbeads and coated polymeric particles, where the particles can exhibit multiple functionalities, thanks to the individual features of their different layers 1]. As fillers in thermosets and thermoplastics, hollow microspheres and expandable microcapsules are among the most frequently used in commercial applications. [Pg.425]


See other pages where Functionalized organic microspheres is mentioned: [Pg.434]    [Pg.434]    [Pg.220]    [Pg.532]    [Pg.428]    [Pg.458]    [Pg.216]    [Pg.240]    [Pg.240]    [Pg.415]    [Pg.109]    [Pg.276]    [Pg.244]    [Pg.112]    [Pg.149]    [Pg.195]    [Pg.111]    [Pg.86]    [Pg.119]    [Pg.36]    [Pg.119]    [Pg.85]    [Pg.210]    [Pg.6]    [Pg.410]    [Pg.299]    [Pg.121]    [Pg.250]    [Pg.368]    [Pg.205]    [Pg.195]    [Pg.212]    [Pg.434]    [Pg.403]    [Pg.149]    [Pg.21]    [Pg.258]    [Pg.92]    [Pg.68]    [Pg.440]    [Pg.680]    [Pg.433]   
See also in sourсe #XX -- [ Pg.434 ]




SEARCH



Microsphere

Microspheres

Microspheres, functional

Organ function

Organic functionalization

Organization functional

© 2024 chempedia.info