Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion seeded

Behavior of VC in emulsion-seeded polymerization is quite different from that of other vinyl monomer such as styrene and vinyl toluene. For instance, in styrene-seeded polymerization, Vanderhoff (11) did not observe any anomalous seed growing. He reports uniform growing for a mixture of two seeds with a < = 2640 and 5570 A., respectively, by seeding 0.193 X 1012 particles/ml. H20, whose surface per ml. of water is, according to our calculations, equal to 0.121 X 1020 sq. A. [Pg.193]

Polyurethane acrylate (PU-A) containing a double bond and COOH group was synthesised by the stepwise reaction of TDI, polyetherdiol, dimethylolpropionic acid (DMPA) and 2-hydroxypropyl acrylate (HPA). The PU-A was neutralised with triethylamine and self-emulsified in water to form the PU-A emulsion seed. The seeded emulsion copolymerisation of methyl methacrylate (MMA) onto the PU-A seed was carried out at 80C under soap-free conditions and an anionic latex of P(UA-MMA) was obtained. The structure of the P(UA-MMA) copolymer, its latex properties and the cast film were significantly affected by the amounts of HPA, DMPA and MMA. The results were discussed. 21 refs. [Pg.49]

Then filter off the solid azoxybenzene at the pump, wash it thoroughly with water, and drain well. Recrystallise from a minimum of m ethylated spirit, allowing the hot solution to cool spontaneously (with occasional stirring) until crystallisation starts, and then cool in ice-water. If crystallisation is delayed, seed the solution with a trace of the crude product if on the other hand the azoxybenzene separates at first as an emulsion, add methylated spirit, drop by drop, with stirring until the solution is clear, and then allow the cooling to proceed as before. The... [Pg.212]

Oil-free alkyds Oil from seeds Oil-in-water emulsion Oil laundering Oil length Oil mining Oil of anise Oil of bergamot Oil of eucalyptus Oil oflemon Oil of Olay Oil of Palma Christi Oil of turpentine Oil Orange Oil-pump Oil reclaiming Oil recovery... [Pg.699]

In one extractor (FMC Inc.), the fmit is located between two cups having sharp-edged metal tubes at their base. The upper cup descends and the many fingers on each cup mesh to express the juice as the tubes cut holes in the top and bottom of the fmit. On further compression, the rag, seeds, and juice sacs are compressed into the bottom tube between the two plugs of peel. A piston moves up inside the bottom tube forcing the juice through perforations in the tube wall. A simultaneous water spray washes the peel oil expressed during extraction away from the peel as an oil—water emulsion the peel oil is recovered separately from the emulsion. [Pg.571]

Miscellaneous Applications. PEIs and their derivatives ate used as cementation auxihaties in cmde oil exploration (459), and for breaking cmde oil emulsions (460) in cmde oil extraction. Seed coatings of water-soluble copolymers containing polyethyleneimine have been developed (461). Polyethyleneimine derivatives have positive photoresist properties (462) amidated polyethyleneimines improve the flow properties of cement (463) and with few exceptions, A/-acyla2iddines act as chemical sterilisers for insects (464). [Pg.14]

Emulsion polymeriza tion of ABS (241) gives a mbber-phase particle morphology which is mostly deterrnined by the mbbet-seed latex. Since the mbber particle size, polydispersity, and cross-linking ate estabhshed before the preparation, the main variables relate to grafting, molecular weight... [Pg.419]

Continuous emulsion copolymerization processes for vinyl acetate and vinyl acetate—ethylene copolymer have been reported (59—64). CycHc variations in the number of particles, conversion, and particle-size distribution have been studied. Control of these variations based on on-line measurements and the use of preformed latex seed particles has been discussed (61,62). [Pg.464]

A new process, from Norway, has filled the size gap between emulsion and suspension polymerization techniques [7,8]. This novel polymerization method, the so-called swollen emulsion polymerization has been developed by Ugelstad for producing uniform polymeric particles in the size range of 2-100 /nm. This process comprises successive swelling steps and repolymerizations for increasing the particle size of seed polymer particles by keeping the monodispersity of the seed latex. [Pg.189]

Sheu and coworkers [111] produced polysty-rene-polydivinylbenzene latex interpenetrating polymer networks by the seeded emulsion polymerization of styrene-divinylbenzene in the crosslinked uniform polystyrene particles. In this study, a series of uniform polystyrene latexes with different sizes between 0.6 and 8.1... [Pg.213]

DSEP direct soapless emulsion polymerization, SSEC seeded soapless emulsion copolymerization, DDC direct dispersion copolymerization, TDSC two-stage dispersion copolymerization, ATES Allyl trietoxysilane, VTES vinyl trietoxysilane, DMAEM dimethylaminoethyl-methacrylate, CMS chloromethylstyrene, GA glutaraldehyde, AAc Acrylic acid Aam Acrylamide HEMA 2-hydroxyethylmethacrylate. [Pg.216]

Soapless seeded emulsion copolymerization has been proposed as an alternative method for the preparation of uniform copolymer microspheres in the submicron-size range [115-117]. In this process, a small part of the total monomer-comonomer mixture is added into the water phase to start the copolymerization with a lower monomer phase-water ratio relative to the conventional direct process to prevent the coagulation and monodispersity defects. The functional comonomer concentration in the monomer-comonomer mixture is also kept below 10% (by mole). The water phase including the initiator is kept at the polymerization temperature during and after the addition of initial monomer mixture. The nucleation takes place by the precipitation of copolymer macromolecules, and initially formed copolymer nuclei collide and form larger particles. After particle formation with the initial lower organic phase-water ratio, an oligomer initiated in the continuous phase is... [Pg.217]

The soapless seeded emulsion copolymerization method was used for producing uniform microspheres prepared by the copolymerization of styrene with polar, functional monomers [115-117]. In this series, polysty-rene-polymethacrylic acid (PS/PMAAc), poly sty rene-polymethylmethacrylate-polymethacrylic acid (PS/ PMMA/PMAAc), polystyrene-polyhydroxyethylmeth-acrylate (PS/PHEMA), and polystyrene-polyacrylic acid (PS/PAAc) uniform copolymer microspheres were synthesized by applying a multistage soapless emulsion polymerization process. The composition and the average size of the uniform copolymer latices prepared by multistage soapless emulsion copolymerization are given in Table 11. [Pg.217]

The uniform polymeric microspheres in submicron-or micron-size range can also be prepared as seed particles by the soapless emulsion or dispersion polymerization of a hydrophobic monomer like styrene. The uniform seed particles are swollen with the organic phase including functional comonomer, monomer, and oil-soluble initiator at a low temperature in an aqueous... [Pg.217]

In another study, uniform composite polymethyl-methacrylate/polystyrene (PMMA/PS) composite particles in the size range of 1-10 fim were prepared by the seeded emulsion polymerization of styrene [121]. The PMMA seed particles were initially prepared by the dispersion polymerization of MMA by using AIBN as the initiator. In this polymerization, poly(7V-vinyl pyrolli-done) and methyl tricaprylyl ammonium chloride were used as the stabilizer and the costabilizer, respectively, in the methanol medium. Seed particles were swollen with styrene monomer in a medium comprised of seed particles, styrene, water, poly(7V-vinyl pyrollidone), Polywet KX-3 and aeorosol MA emulsifiers, sodium bicarbonate, hydroquinone inhibitor, and azobis(2-methylbu-... [Pg.219]

PS/PHEM A particles in micron-size range were also obtained by applying the single-stage soapless emulsion copolymerization method [124]. But, this method provided copolymer particles with an anomalous shape with an uneven surface. PS or PHEMA particles prepared by emulsifier-free emulsion polymerization were also used as seed particles with the respective comonomer to achieve uniform PS/PHEMA or PHEMA/PS composite particles. PS/PHEMA and PHEMA/PS particles in the form of excellent spheres were successfully produced 1 iLitm in size in the same study. [Pg.220]

Preparation of uniform seed particles Soapless emulsion polymerization is usually preferred for the preparation of uniform seed particles since this technique provides emulsifier-free, larger, and highly uniform micropheres relative to those that can be obtained by the conventional emulsion recipes including emulsifiers and various additives. The size of uniform seed particles with the soapless emulsion procedure is in the range of 0.6-1.2 tm depending on the polymerization conditions [75,108]. [Pg.220]

A research group in Lehigh University has extensively studied the synthesis and characterization of uniform macroporous styrene-divinylbenzene copolymer particles [125,126]. In their studies, uniform porous polymer particles were prepared via seeded emulsion polymerization in which linear polymer (polystyrene seed) or a mixture of linear polymer and solvent were used as inert diluents [125]. The average pore diameter was on the order of 1000 A with pore volumes up to... [Pg.221]

A novel approach to RAFT emulsion polymerization has recently been reported.461529 In a first step, a water-soluble monomer (AA) was polymerized in the aqueous phase to a low degree of polymerization to form a macro RAFT agent. A hydrophobic monomer (BA) was then added under controlled feed to give amphiphilic oligomers that form micelles. These constitute a RAFT-containing seed. Continued controlled feed of hydrophobic monomer may be used to continue the emulsion polymerization. The process appears directly analogous to the self-stabilizing lattices approach previously used in macromonomer RAFT polymerization (Section 9.5.2). Both processes allow emulsion polymerization without added surfactant. [Pg.521]

A modified latex composition contains a phosphorus surface group. Such a latex is formed by emulsion polymerization of unsaturated synthetic monomers in the presence of a phosponate or a phosphate which is intimately bound to the surface of the latex. Thus, a modified latex containing 46% solids was prepared by emulsion polymerization of butadiene, styrene, acrylic acid-styrene seed latex, and a phosphonate comonomer in H20 in the presence of phosphated alkylphenol ethoxylate at 90°C. The modified latex is useful as a coating for substrates and as a binder in aqueous systems containing inorganic fillers employed in paper coatings, carpet backings, and wallboards [119]. [Pg.602]

There are many variations on this theme. Fed-batch and continuous emulsion polymerizations are common. Continuous polymerization in a CSTR is dynamically unstable when free emulsifier is present. Oscillations with periods of several hours will result, but these can be avoided by feeding the CSTR with seed particles made in a batch or tubular reactor. [Pg.502]

Hollow and porous polymer capsules of micrometer size have been fabricated by using emulsion polymerization or through interfacial polymerization strategies [79,83-84, 88-90], Micron-size, hollow cross-linked polymer capsules were prepared by suspension polymerization of emulsion droplets with polystyrene dissolved in an aqueous solution of poly(vinyl alcohol) [88], while latex capsules with a multihollow structure were processed by seeded emulsion polymerization [89], Ceramic hollow capsules have also been prepared by emulsion/phase-separation procedures [14,91-96] For example, hollow silica capsules with diameters of 1-100 micrometers were obtained by interfacial reactions conducted in oil/water emulsions [91],... [Pg.515]


See other pages where Emulsion seeded is mentioned: [Pg.180]    [Pg.111]    [Pg.8947]    [Pg.8948]    [Pg.111]    [Pg.180]    [Pg.111]    [Pg.8947]    [Pg.8948]    [Pg.111]    [Pg.68]    [Pg.420]    [Pg.230]    [Pg.152]    [Pg.15]    [Pg.212]    [Pg.213]    [Pg.213]    [Pg.215]    [Pg.215]    [Pg.215]    [Pg.218]    [Pg.218]    [Pg.218]    [Pg.220]    [Pg.221]    [Pg.221]    [Pg.222]    [Pg.223]    [Pg.108]    [Pg.336]    [Pg.211]   
See also in sourсe #XX -- [ Pg.199 , Pg.358 , Pg.567 , Pg.568 , Pg.569 , Pg.570 , Pg.571 , Pg.572 , Pg.573 ]




SEARCH



Emulsion polymerization seed latex

Emulsion polymerization seeded process

Latex particles surface functionalization seeded emulsion copolymerization

Polystyrene seed emulsion

Reactor seeded emulsion polymerization

Seed emulsion polymerisation

Seeded emulsion polymerization

Seeded emulsion polymerization conversion time curves

Seeded emulsion polymerization kinetics

Seeded emulsion polymerization molecular weight additives

Seeded emulsion polymerization of styrene

Seeded emulsion polymerization styrene

Seeded emulsion polymerization vinyl chloride

Tubular reactor seeded emulsion polymerization

© 2024 chempedia.info