Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Frasch mining process

Sulfur used by the rubber industry is of a special grind (or mesh size) derived from sulfur in the rhombic crystalline form. Sulfur that is used today comes from either recovered sulfur from natural gas or from the Frasch mining process as shown in Figure 10.4. [Pg.263]

Figure 10.4 Sulfur is processed from recovered sulfur from natural gas (Process 1) or from the Frasch mining process (Process 2)... Figure 10.4 Sulfur is processed from recovered sulfur from natural gas (Process 1) or from the Frasch mining process (Process 2)...
Frantz Ferrofilter Frasch mining Frasch process... [Pg.422]

Sulfur can be produced direcdy via Frasch mining or conventional mining methods, or it can be recovered as a by-product from sulfur removal and recovery processes. Production of recovered sulfur has become more significant as increasingly sour feedstocks are utilized and environmental regulations concerning emissions and waste streams have continued to tighten worldwide. Whereas recovered sulfur represented only 5% of the total sulfur production ia 1950, as of 1996 recovered sulfur represented approximately two-thirds of total sulfur production (1). Recovered sulfur could completely replace native sulfur production ia the twenty-first century (2). [Pg.209]

Recovered sulfur has grown steadily in importance as a world source of brimstone since the mid 1950 s. Between 1965 and 1977 recovered sulfur s share of world supply grew from 18% to 30% (D and continues to grow in relation to Frasch mined and other forms of native elemental sulfur. All of this has meant a rapid growth in the number of sulfur recovery facilities and new developments in the various techniques and processes associated with the industry. [Pg.38]

Sulfur is a, relatively abundant element, occurring as an impurity in many metal ores and fossil fuels. It also occurs in relatively pure form from which it can be mined via the Frasch process. Until recently Frasch mining was the major source of supply in the world with the largest producers being the U.S., Mexico and Poland. In the late 1960 s, recovery of sulfur as a by-product from "cleaning" operations began to accelerate rapidly. Sulfur recovery from... [Pg.109]

Many sites have utilized the famous process of Herman Fraseh (see Table 4.10). With opening of the Frasch mines in Poland, global Frasch production... [Pg.140]

Total 1991 world production of sulfur in all forms was 55.6 x 10 t. The largest proportion of this production (41.7%) was obtained by removal of sulfur compounds from petroleum and natural gas (see Sulfurremoval and recovery). Deep mining of elemental sulfur deposits by the Frasch hot water process accounted for 16.9% of world production mining of elemental deposits by other methods accounted for 5.0%. Sulfur was also produced by roasting iron pyrites (17.6%) and as a by-product of the smelting of nonferrous ores (14.0%). The remaining 4.8% was produced from unspecified sources. [Pg.245]

Fluid deposits are defined as those which can be recovered in fluid form by pumping, in solution, or as particles in a slurry. Petroleum products and Frasch process sulfur are special cases. At this time no vaUd distinction is made between resources on the continental shelf and in the deep oceans. However, deep seabed deposits of minerals which can be separated by differential solution are expected to be amenable to fluid mining methods in either environment. [Pg.288]

Sulfur is produced from a variety of sources using many different techniques in many countries around the world. Worldwide changes have affected not only the sources of sulfur, but also the amounts consumed. Sulfur sources in the United States underwent significant changes during the 1980s. Voluntary sulfur from the Frasch process (mines) suppHed only 25% of the sulfur in the United States in 1995, compared to about 53% in 1980, whereas recovered or involuntary sulfur suppHed 63% of the sulfur in the United States in 1995, compared to 34% in 1980. About 12% is suppHed from other forms, primarily by metallurgy (21,33). [Pg.121]

The sulfiu can be piped long distances in liquid form or transported molten in ships, barges or rail cars. Alternatively it can be prilled or bandied as nuggets or chunks. Despite the vast bulk of liquid sulfur mined by the Frasch process it is obtained in very pure form. There is virtually no selenium, tellurium or arsenic impurity, and the product is usually 99.5-99.9% pure. ... [Pg.650]

Frasch process for mining sulfur. Superheatad watar at 165°C is sent down through the outer pipe to form a pool of molten sulfur (mp = 119°C) at the base. Compressed air, pumped down the inner pipe, brings the sulfur to the surface. Sulfur deposits are often 100 m or more beneath the earth s surface, covered with quicksand and rock. [Pg.558]

Frasch process A process for mining sulfur that uses superheated water to melt the sulfur and compressed air to force it to the surface, free energy See Gibbs free energy. free expansion Expansion against zero opposing pressure. [Pg.951]

The origin of the small Sy content of all commercial sulfur samples is the following. Elemental sulfur is produced either by the Frasch process (mining of sulfur deposits) or by the Claus process (partial oxidation of HyS) [62]. In each case liquid sulfur is produced (at ca. 140 °C) which at this temperature consists of 95% Ss and ca. 5% other sulfur homocycles of which Sy is the main component. On slow cooling and crystalhzation most of the non-Ss species convert to the more stable Ss and to polymeric sulfur but traces of Sy are built into the crystal lattice of Ss as sohd state defects. In some commercial samples traces of Ss or Sg were detected in addition. The Sy defects survive for years if not forever at 20 °C. The composition of the commercial samples depends mainly on the coohng rate and on other experimental conditions. Only recrystalhzation from organic solvents removes Sy and, of course, the insoluble polymeric sulfur and produces pure a-Ss [59]. [Pg.41]

Sulfur for commercial purposes is derived mainly from native elemental sulfur mined by the Frasch process. Large quantities of sulfur are also recovered from the roasting of metal sulfides and the refining of crude oil, i.e., from the sulfur by-products of purified sour natural gas and petroleum (the designation sour is generally associated with high-sulfur petroleum products). Reserves of elemental sulfur in evaporite and volcanic deposits and of sulfur associated with natural gas,... [Pg.4]

Frasch (1) A process for extracting sulfur from underground deposits, developed by H. Frasch between 1890 and 1902 at Sulfur Mine, LA. Three concentric pipes are inserted into a hole drilled into the deposit. The outermost pipe carries water superheated to 140 to 165°C, which melts the sulfur hot air is forced down the central pipe, which forces the molten sulfur up through the intermediate annular space. Only a small proportion of sulfur deposits have the appropriate geology for extraction in this way. Because of this invention, sulfur came to be exported from America to Europe, instead of from Sicily to America. In 1991 the process was operated in the United States, Mexico, Poland, and Iraq. [Pg.111]

Sulfur is mined by the recovery method known as the Frasch process, which was invented by Herman Frasch in Germany in the early 1900s. This process forces superheated water, under pressure, into deep underground sulfur deposits. Compressed air then forces the molten sulfur to the surface, where it is cooled. There are other methods for mining sulfur, but the Frasch process is the most important and most economical. [Pg.235]

Elemental sulfur1-4 occurs naturally in association with volcanic vents and, in Texas and Louisiana, as underground deposits. The latter are mined by injecting air and superheated water, which melts the sulfur and carries it to the surface in the return flow (the Frasch process). Most of the sulfur used in industry, however, comes as a by-product of the desulfurization of fossil fuels. For example, Albertan sour natural gas, which often contains over 30% (90%, in some cases) hydrogen sulfide (H2S), as well as hydrocarbons (mainly methane) and small amounts of C02, carbonyl sulfide (COS), and water, is sweetened by scrubbing out the H2S and then converting it to elemental S in the Claus process.5 The Claus process is applicable in any industrial operation that produces H2S (see Section 8.5) it converts this highly toxic gas to nontoxic, relatively unreactive, and easily transportable solid sulfur. [Pg.191]

Pyrite is the most abundant of the metal sulfides. For many years, until the Frasch process was developed, pyrite was the main source of sulfur and, for much of the first half of the twentieth century, comprised over 50% of world sulfur production. Pyrite reserves are distributed throughout the world and known deposits have been mined in about 30 countries. Possibly the largest pyrite reserves in the world are located in southern Spain, Portugal, and the CIS. Large deposits are also in Canada, Cyprus, Finland, Italy, Japan, Norway, South Africa, Sweden, Turkey, the United States, and Yugoslavia. However, the three main regional producers of pyrites continue to be Western Europe Eastern Europe, including the CIS and China. [Pg.119]

Sulfur is a very important industrial chemical. Current consumption ranks sulfur with the top five inorganic and organic chemicals produced in the U.S. The U.S. is the largest producer and consumer of sulfur in the world. The U.S. position in sulfur production resulted from the development of the Frasch process toward the end of the 19th century for mining the large sulfur deposits associated with salt domes in Texas and Louisiana. [Pg.83]


See other pages where Frasch mining process is mentioned: [Pg.124]    [Pg.124]    [Pg.124]    [Pg.124]    [Pg.118]    [Pg.651]    [Pg.115]    [Pg.118]    [Pg.1166]    [Pg.96]    [Pg.110]    [Pg.117]    [Pg.138]    [Pg.460]    [Pg.119]    [Pg.119]    [Pg.649]    [Pg.650]    [Pg.558]    [Pg.449]    [Pg.554]    [Pg.28]    [Pg.464]    [Pg.117]    [Pg.119]    [Pg.119]    [Pg.4]    [Pg.123]   
See also in sourсe #XX -- [ Pg.25 , Pg.263 , Pg.513 ]




SEARCH



Frasch process

© 2024 chempedia.info