Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elements relative abundance

Element Relative abundance Element Relative abundance... [Pg.3]

Element Relative abundance Compound Stored oxygen... [Pg.379]

Hydrogen overwhelmingly is the most abundant element in the universe. Stars are composed mostly of hydrogen, followed by helium and only very small amounts of any other element. Relative abundances of elements can be expressed in parts per million, either by mass or by numbers of atoms. [Pg.33]

Element Relative Abundance (%) of Lowest-Mass Isotope Relative Abundance (%) of Other Isotopes... [Pg.307]

Iron is a relatively abundant element in the universe. It is found in the sun and many types of stars in considerable quantity. Its nuclei are very stable. Iron is a principal component of a meteorite class known as siderites and is a minor constituent of the other two meteorite classes. The core of the earth — 2150 miles in radius — is thought to be largely composed of iron with about 10 percent occluded hydrogen. The metal is the fourth most abundant element, by weight that makes up the crust of the earth. [Pg.57]

Compounds that contain chlorine, bromine, sulfur, or silicon are usually apparent from prominent peaks at masses 2, 4, 6, and so on, units larger than the nominal mass of the parent or fragment ion. Eor example, when one chlorine atom is present, the P + 2 mass peak will be about one-third the intensity of the parent peak. When one bromine atom is present, the P + 2 mass peak will be about the same intensity as the parent peak. The abundance of heavy isotopes is treated in terms of the binomial expansion (a -I- h) , where a is the relative abundance of the light isotope, b is the relative abundance of the heavy isotope, and m is the number of atoms of the particular element present in the molecule. If two bromine atoms are present, the binomial expansion is... [Pg.812]

For other elements that occur with major relative abundances of more than one isotope in the natural state, the isotope pattern becomes much more complex. For example, with chlorine and bromine, the presence of these elements is clearly apparent from the isotopes Cl and for chlorine and Br and Br for bromine. Figure 47.2a shows the molecular ion region for the compound chlorodecane. Now, there are new situations in that C, C, C1, and Cl isotopes all have probabilities of occurring together. Thus, there are molecular ion peaks for + Cl, C + Cl, + Cl, and so on. Even so, the isotopic ratio of 3 1 for Cl to Cl is very clear... [Pg.348]

For any one element, the abundances (relative amounts) of isotopes can be described in percentage terms. Thus, fluorine is monoisotopic viz., it contains only nuclei of atomic mass 19, and phosphorus has 100% abundance of atoms with atomic mass 31. For carbon, the first two isotopes occur in the proportions of 98.882 to 1.108. [Pg.424]

Trace-element analysis of metals can give indications of the geographic provenance of the material. Both emission spectroscopy (84) and activation analysis (85) have been used for this purpose. Another tool in provenance studies is the measurement of relative abundances of the lead isotopes (86,87). This technique is not restricted to metals, but can be used on any material that contains lead. Finally, for an object cast around a ceramic core, a sample of the core material can be used for thermoluminescence dating. [Pg.421]

Comparing the relative abundance of the rare earths and the other elements Hsted in Table 1, the rare earths are not so rare. Cerium, the most abundant of the rare-earth elements is roughly as abundant as tin thuHum, the least abundant, is more common than cadmium or silver. Over 200... [Pg.539]

Chromium [7440-47-3] Cr, also loosely called chrome, is the twenty-first element in relative abundance with respect to the earth s cmst, ranking with V,... [Pg.113]

This book presents a unified treatment of the chemistry of the elements. At present 112 elements are known, though not all occur in nature of the 92 elements from hydrogen to uranium all except technetium and promethium are found on earth and technetium has been detected in some stars. To these elements a further 20 have been added by artificial nuclear syntheses in the laboratory. Why are there only 90 elements in nature Why do they have their observed abundances and why do their individual isotopes occur with the particular relative abundances observed Indeed, we must also ask to what extent these isotopic abundances commonly vary in nature, thus causing variability in atomic weights and possibly jeopardizing the classical means of determining chemical composition and structure by chemical analysis. [Pg.1]

Because of the long time scale involved in the s-process, unstable nuclides formed by (n.y) reactions have time to decay subsequently by decay (electron emission). The crucial factor in determining the relative abundance of elements... [Pg.12]

The relative abundances of the various isotopes of the light elements Li, Be and B therefore depend to some extent on which detailed model of the big bang is adopted, and experimentally determined abundances may in time permit conclusions to be drawn as to the relative importance of these processes as compared to x-process spallation reactions. [Pg.15]

Accurate atomic weight values do not automatically follow from precise measurements of relative atomic masses, however, since the relative abundance of the various isotopes must also be determined. That this can be a limiting factor is readily seen from Table 1.3 the value for praseodymium (which has only 1 stable naturally occurring isotope) has two more significant figures than the value for the neighbouring element cerium which has 4 such isotopes. In the twelve years since the first edition of this book was published the atomic weight values of no fewer than 55 elements have been improved, sometimes spectacularly, e.g. Ni from 58.69( 1) to 58.6934(2). [Pg.16]

Abundances of lUPAC (the International Union of Pure and Applied Chemistry). Their most recent recommendations are tabulated on the inside front fly sheet. From this it is clear that there is still a wide variation in the reliability of the data. The most accurately quoted value is that for fluorine which is known to better than I part in 38 million the least accurate is for boron (1 part in 1500, i.e. 7 parts in [O ). Apart from boron all values are reliable to better than 5 parts in [O and the majority arc reliable to better than I part in 10. For some elements (such as boron) the rather large uncertainty arises not because of experimental error, since the use of mass-spcctrometric measurements has yielded results of very high precision, but because the natural variation in the relative abundance of the 2 isotopes °B and "B results in a range of values of at least 0.003 about the quoted value of 10.811. By contrast, there is no known variation in isotopic abundances for elements such as selenium and osmium, but calibrated mass-spcctrometric data are not available, and the existence of 6 and 7 stable isotopes respectively for these elements makes high precision difficult to obtain they are thus prime candidates for improvement. [Pg.17]

The metallic element titanium (11) is relatively abundant in nature it accounts for 0.56% of the earth s crust. This number may not seem very impressive until you realize that it exceeds the combined abundances of ten familiar elements H, N, C, P, S, Cl, Cr, Ni, Cu, and Zn. The most important ore of titanium is ilmenite. a mineral commonly found as a deposit of black sand along beaches in the United States, Canada, Australia, and Norway. In ilmenite. titanium is chemically combined with iron and oxygen. The presence of iron makes the ore magnetic. [Pg.19]

The greater the mass of an individual atom, the greater the molar mass of the substance. However, most elements exist in nature as a mixture of isotopes. We saw in Section B, for instance, that neon exists as three isotopes, each with a different mass. In chemistry, we almost always deal with natural samples of elements, which have the natural abundance of isotopes. So, we need the average molar mass, the molar mass calculated by taking into account the masses of the isotopes and their relative abundances in typical samples ... [Pg.65]

FIGURE 14.1 These charts show the relative abundances of the principal elements in (a) the universe (the "cosmic abundances") (b) the crust of the Earth and (ci the human hody... [Pg.702]

The composition of the Earth was determined both by the chemical composition of the solar nebula, from which the sun and planets formed, and by the nature of the physical processes that concentrated materials to form planets. The bulk elemental and isotopic composition of the nebula is believed, or usually assumed to be identical to that of the sun. The few exceptions to this include elements and isotopes such as lithium and deuterium that are destroyed in the bulk of the sun s interior by nuclear reactions. The composition of the sun as determined by optical spectroscopy is similar to the majority of stars in our galaxy, and accordingly the relative abundances of the elements in the sun are referred to as "cosmic abundances." Although the cosmic abundance pattern is commonly seen in other stars there are dramatic exceptions, such as stars composed of iron or solid nuclear matter, as in the case with neutron stars. The... [Pg.14]

Table 4.2 Masses and relative abundances of some isotopes of commonly occurring elements... Table 4.2 Masses and relative abundances of some isotopes of commonly occurring elements...
Element Mass (relative abundance) Mass (relative abundance) Mass (relative abundance)... [Pg.168]


See other pages where Elements relative abundance is mentioned: [Pg.3]    [Pg.225]    [Pg.264]    [Pg.3]    [Pg.225]    [Pg.264]    [Pg.155]    [Pg.252]    [Pg.1287]    [Pg.344]    [Pg.97]    [Pg.213]    [Pg.539]    [Pg.161]    [Pg.198]    [Pg.18]    [Pg.587]    [Pg.6]    [Pg.18]    [Pg.796]    [Pg.1074]    [Pg.69]    [Pg.38]    [Pg.297]    [Pg.378]    [Pg.168]    [Pg.263]    [Pg.141]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Abundances relative

Carbon compounds element abundance relative

Elemental abundances

Elements abundance 2, 3

Relative Abundance of Elements

Relative abundance of elements in the sun

Relative isotopic abundance common elements

The relative abundance of different elements

© 2024 chempedia.info