Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fractional distillation ethanol-water

The fermentation is inhibited by its end product ethanol it is not possible to prepare solutions containing more than 10-15% ethanol by this method. More concentrated ethanol can be isolated by fractional distillation. Ethanol and water form an azeotropic mixture consisting of 95% ethanol and 5% water by weight, which is the most concentrated ethanol that can be obtained by fractionation of dilute ethanol-water mixtures. [Pg.155]

DAG is treated with ethanol and hydrochloric acid in the presence of inert solvent, eg, chlorinated solvents, hydrocarbons, ketones, etc. The L-ascorbic acid precipitates from the mixture as it forms, minimising its decomposition (69). Cmde L-ascorbic acid is isolated through filtration and purified by recrystallization from water. The pure L-ascorbic acid is isolated, washed with ethanol, and dried. The mother Hquor from the recrystallization step is treated in the usual manner to recover the L-ascorbic acid and ethanol contained in it. The cmde L-ascorbic acid mother Hquor contains solvents and acetone Hberated in the DAG hydrolysis. The solvents are recovered by fractional distillation and recycled. Many solvent systems have been reported for the acid-catalyzed conversion of DAG to L-ascorbic acid (46). Rearrangement solvent systems are used which contain only the necessary amount of water required to give >80% yields of high purity cmde L-ascorbic acid (70). [Pg.17]

Hydrolysis of the ester is achieved by refluxing in aqueous N or 2N NaOH solution until the insoluble ester dissolves. The solution is then cooled, and the alcohol is extracted into a suitable solvent, e.g. ether, toluene or alcohol-free chloroform. The extract is dried (CaS04, MgS04) and distilled, then fractionally distilled if liquid or recrystallised if solid. (The p-nitrobenzoic acid can be recovered by acidification of the aqueous layer.) In most cases where the alcohol to be purified can be readily extracted fi-om ethanol, the hydrolysis of the ester is best achieved with N or 2N ethanolic NaOH or 85% aqueous ethanolic N NaOH. The former is prepared by dissolving the necessary alkali in a minimum volume of water and diluting with absolute alcohol. The ethanolic solution is refluxed for one to two hours and hydrolysis is complete when an aliquot gives a clear solution on dilution with four or five times its volume of water. The bulk of the ethanol is distilled off and the residue is... [Pg.56]

The phenol (Imol) in 5% aqueous NaOH is treated (while cooling) with benzoyl chloride (Imol) and the mixture is stirred in an ice bath until separation of the solid benzoyl derivative is complete. The derivative is filtered off, washed with alkali, then water, and dried (in a vacuum desiccator over NaOH). It is recrystalUsed from ethanol or dilute aqueous ethanol. The benzoylation can also be carried out in dry pyridine at low temperature ca 0°) instead of in NaOH solution, finally pouring the mixture into water and collecting the solid as above. The ester is hydrolysed by refluxing in an alcohol (for example, ethanol, n-butanol) containing two or three equivalents of the alkoxide of the corresponding alcohol (for example sodium ethoxide or sodium n-butoxide) and a few ca 5-10) millilitres of water, for half an hour to three hours. When hydrolysis is complete, an aliquot will remain clear on dilution with four to five times its volume of water. Most of the solvent is distilled off. The residue is diluted with cold water and acidified, and the phenol is steam distilled. The latter is collected from the distillate, dried and either fractionally distilled or recrystalUsed. [Pg.59]

These can be converted to their uranyl nitrate addition compounds. The crude or partially purified ester is saturated with uranyl nitrate solution and the adduct filtered off. It is recrystallised from -hexane, toluene or ethanol. For the more soluble members crystallisation from hexane using low temperatures (-40°) has been successful. The adduct is decomposed by shaking with sodium carbonate solution and water, the solvent is steam distilled (if hexane or toluene is used) and the ester is collected by filtration. Alternatively, after decomposition, the organic layer is separated, dried with CaCl or BaO, filtered, and fractionally distilled under high vacuum. [Pg.60]

Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water. They can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides. [Pg.63]

This ester (70 g) and diethyl carbonate (250 mg) were stirred at 90°C to 100°C while a solution of sodium ethoxide [from sodium (7.8 g) and ethanol (1 54 ml)] was added over 1 hr. During addition, ethanol was allowed to distill and after addition distillation was continued until the column heat temperature reached 124°C. After cooling the solution to 90°C, dimethyl sulfate (33 ml) was followed by a further 85 ml of diethyl carbonate. This solution was stirred and refluxed for 1 hr and then, when Ice cool, was diluted with water and acetic acid (10 ml). The malonate was isolated in ether and fractionally distilled to yield a fraction boiling at 148°C to 153°C/0.075 mm, identified as the alpha-methyl malonate. This was hydrolyzed by refluxing for 1 hr at 2.5N sodium hydroxide (350 ml) and alcohol (175 ml), excess alcohol was distilled and the residual suspension of sodium salt was acidified with hydrochloric acid to give a precipitate of the alpha-methyl malonic acid. This was decarboxylated by heating at 180°C to 200°Cfor 30 minutes and recrystallized from petroleum ether (BP 80°C to 100°C) to give 2-(2-fluoro-4-biphenylyl)propionic acid, MP 110°C to 111°C. [Pg.690]

A mixture of 185 g of p-chloroatrolactic acid, 600 ml of ethanol and 60 ml of concentrated sulfuric acid is refluxed for about twelve hours. About half the solvent is then removed by evaporation in vacuo at room temperature, the residue is poured over cracked ice, and diluted with water to a volume of about 2 liters. The ethyl p-chloroatrolactate formed in the reaction is extracted with two 1 liter portions of ether. The combined ether extracts are washed with successive 200 ml portions of water, 5% sodium carbonate solution, and water, and are dried over anhydrous magnesium sulfate. The dried ether solution is subjected to fractional distillation, and the fraction boiling at about 90°C to 100°C at a pressure of 0.1 mm of mercury, is collected. The distillate consists of ethyl p-chloroatrolactate. [Pg.1198]

A solution containing 741 g (5.0 mols) of 1-phenyl-2-propylidenylhydrazine, 300 g (5.0 mols) of glacial acetic acid and 900 cc of absolute ethanol was subjected to hydrogenation at 1,875 psi of hydrogen in the presence of 10 gof platinum oxide catalyst and at a temperature of 30°C to 50°C (variation due to exothermic reaction). The catalyst was removed by filtration and the solvent and acetic acid were distilled. The residue was taken up In water and made strongly alkaline by the addition of solid potassium hydroxide. The alkaline mixture was extracted with ether and the ether extracts dried with potassium carbonate. The product was collected by fractional distillation, BP B5°C (0.30 mm) yield 512 g (68%). [Pg.1205]

Pyridinecarboxaldehyde (nicotinaldehyde) was supplied by Aldrich-Europe, Beerse, Belgium. The checkers purified this reagent by fractional distillation, b.p. 95-97° (15 mm.). The submitters stress that 3-pyridinecarboxaldehyde should be completely free from contamination by the acid. They stirred 150 g. of the aldehyde with 100 g. of potassium carbonate and 300 ml. of ethanol for 12 hours, filtered the suspended solid, and fractionally distilled the filtrate through a 30-cm. Vigreux column using a water aspirator. However, the checkers found that the recovery of aldehyde from this procedure was very low, and recommend vacuum distillation instead. 3-Pyridinecarboxaldehyde is a powerful skin irritant and should be handled with protective gloves. [Pg.164]

Add 20 g of clean sodium methal to 325 ml of cooled (-16°) dry ethanol. Add 100 g of 3-methyl-cyclohexanone in small amounts over a period of 1 hour and 150 g of diethyloxylate while keeping Ae temp below -11°. Maintain this temp for 3 hours, then 12 hours at room temperature. Make a solution of 1.3 liters of water and 60 ml of 2 N sulfuric acid and add this to the reaction mixture. The resulting yellow brown oil is separated and the water is extracted with ether until the yellow color is removed. Combine the oil and the extracts and distill off the solvent and unreacted starting material at 100° with 13 mm of vacuo. Slowly heat the residue to 220° and hold there for 90 min. Fractionally distill 2 times to get a little over 80 g of colorless oily product. [Pg.74]

Removal of the bulky, amorphous selenium is accomplished with the aid of a 6-in. Buchner funnel. The selenium is returned to the reaction flask and extracted with 300 ml. of boiling 95% ethanol for 1 hour (Note 4). The solution, obtained by decantation from the compact gray selenium, is combined with the above filtrate in a 4-1. distilling flask. Distillation under reduced pressure gives two fractions. The lower-boiling fraction (25-60°/16 mm.) consists mainly of ethanol, water, dioxane, and cyclohexanone the higher-boiling one (60-90°/16 mm.) contains cyclohexanone and 1,2-cyclohexanedione with traces of water and dioxane. The yield of crude product is approximately 322 g. [Pg.36]

Problem 13.56 The attempt to remove water from ethanol by fractional distillation gives 95% ethanol, an azeotrope that boils at a constant temperature of 78.15 °C. It has a lower boiling point than either water (100 °C) or ethanol (78.3 °C). A liquid mixture is an azeotrope if it gives a vapor of the same composition. How does boiling 95% ethanol with Mg remove the remaining H O ... [Pg.289]

To a flask containing 45 ml (0.77 mole) of absolute ethanol is added portion-wise 2.5 gm (0.11 gm-atom) of sodium metal. While stirring vigorously and cooling, 9.55 gm (0.05 mole) of 2,2-dichlorobenzo-l,3-dioxolane in 25 ml of ether is added dropwise. After 18 hr the salt is filtered off, the filtrate diluted with ether, washed with cold water, dried over potassium carbonate, and fractionally distilled to afford 6.4 gm (60%), b.p. 123°C (15 mm), 1.4943. [Pg.288]

If miscible liquids are to be separated, then this can be done by fractional distillation. The apparatus used for this process is shown in the photo and diagram in Figure 2.22, and could be used to separate a mixture of ethanol and water. [Pg.32]

Fractional distillation relies upon the liquids having different boiling points. When an ethanol and water mixture is heated the vapours of ethanol and water boil off at different temperatures and can be condensed and collected separately. [Pg.32]

Because water has the higher boiling point of the two, it condenses out from the mixture with ethanol. This is what takes place in the fractionating column. The water condenses and drips back into the flask while the ethanol vapour moves up the column and into the condenser, where it condenses into liquid ethanol and is collected in the receiving flask as the distillate. When all the ethanol has distilled over, the temperature reading on the thermometer rises... [Pg.32]


See other pages where Fractional distillation ethanol-water is mentioned: [Pg.47]    [Pg.215]    [Pg.68]    [Pg.1313]    [Pg.26]    [Pg.58]    [Pg.59]    [Pg.62]    [Pg.234]    [Pg.99]    [Pg.73]    [Pg.73]    [Pg.68]    [Pg.225]    [Pg.273]    [Pg.134]    [Pg.146]    [Pg.52]    [Pg.53]    [Pg.55]    [Pg.55]    [Pg.56]    [Pg.92]    [Pg.52]    [Pg.53]    [Pg.55]    [Pg.55]    [Pg.92]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Distillation ethanol

Distillation fractional

Distillation fractions

Distillation water

Ethanol fractional distillation

Ethanol/water

Water distilling

Water, distilled

© 2024 chempedia.info