Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform reactions

Freiser B S 1988 Fourier Transform Mass Speotrometry Techniques for the Study of Ion-Molecule Reactions ed J M Farrar and W FI Saunders Jr (New York Wiley)... [Pg.826]

Grover R, Decouzon M, Maria P-C and Gal J-F 1996 Reliability of Fourier transform-ion cyclotron resonance determinations of rate constants for ion/molecule reactions Eur. Mass Spectrom. 2 213-23... [Pg.1360]

Fisher J J and McMahon T B 1990 Determination of rate constants for low pressure association reactions by Fourier transform-ion cyclotron resonance Int. J. Mass Spectrom. Ion. Proc 100 707-17... [Pg.1360]

Infrared spectroelectrochemical methods, particularly those based on Fourier transform infrared (FTIR) spectroscopy can provide structural information that UV-visible absorbance techniques do not. FTIR spectroelectrochemistry has thus been fruitful in the characterization of reactions occurring on electrode surfaces. The technique requires very thin cells to overcome solvent absorption problems. [Pg.44]

Fourier transform infrared (FTIR) spectroscopy is the most popular method for determining the imidization process in the solid state and identifying specific substituents on the macromolecular backbone (e.g., CN, SO3H, CO, SO2).131 A method for calculating the diermal imidization extent based on FTIR data has been reported by Pride.132 Raman spectroscopy was used on the model study of PMDA-ODA condensation, and the possible formation of an inline bond by reaction of an amino group with an imide carboxyle was evidenced.133... [Pg.300]

Friedel-Crafts catalysts, 329, 331 Friedel-Crafts reaction, 297, 361 Front-end reactions, 235 FT Raman spectroscopy, 387 FTIR spectrometry. See Fourier transform infrared (FTIR) spectrometry Fuel cells, 272-273 Full prepolymers, 236, 237 Functionalized polyolefins, 459-460... [Pg.584]

To check the identity and purity of the products obtained in the above reactions it is not sufficient to analyze for the sulfur content since a mixture may incidentally have the same S content. Either X-ray diffraction on single crystals or Raman spectra of powder-like or crystalline samples will help to identify the anion(s) present in the product. However, the most convincing information comes from laser desorption Fourier transform ion cyclotron resonance (FTICR) mass spectra in the negative ion mode (LD mass spectra). It has been demonstrated that pure samples of K2S3 and K2S5 show peaks originating from S radical anions which are of the same size as the dianions in the particular sample no fragment ions of this type were observed [28]. [Pg.132]

Evidence of chemical interaction between the mbbers and compatibUizers was demonstrated by extracting the blends with chloroform at room temperamre and examining both soluble and insoluble fractions with Fourier transform infrared (ETIR) spectrometry. The weight of the insoluble fraction of the compatibilized melt blend was more than that in the uncompatibilized blend indicating the formation of (EP-g-MA)-g-CR due to reaction between MA and allylic chlorine of CR. The compounds containing epoxidized EPDM additive were examined by both optical and... [Pg.309]

Often the actions of the radial parts of the kinetic energy (see Section IIIA) on a wave packet are accomplished with fast Fourier transforms (FFTs) in the case of evenly spaced grid representations [24] or with other types of discrete variable representations (DVRs) [26, 27]. Since four-atom and larger reaction dynamics problems are computationally challenging and can sometimes benefit from implementation within parallel computing environments, it is also worthwhile to consider simpler finite difference (FD) approaches [25, 28, 29], which are more amenable to parallelization. The FD approach we describe here is a relatively simple one developed by us [25]. We were motivated by earlier work by Mazziotti [28] and we note that later work by the same author provides alternative FD methods and a different, more general perspective [29]. [Pg.14]

Section IIC showed how a scattering wave function could be computed via Fourier transformation of the iterates q k). Related arguments can be applied to detailed formulas for S matrix elements and reaction probabilities [1, 13]. For example, the total reaction probability out of some state consistent with some given set of initial quantum numbers, 1= j2,h), is [13, 17]... [Pg.16]

Often one of the diatomic bond distances r or r2 can be used as s. Insertion of Eq. (41) into Eq. (40), coupled with arguments such as those in Section IIC to connect < >/( ) to RWP iterates, then leads to an expression for Eq. (40) within the RWP framework [13]. The relevant reaction probability expression, Eq. (18) of Ref. [13], which need not be detailed here, involves Fourier transformation of ls=so ( ) / ls=so ( ) requires the real wave packet and its derivative... [Pg.17]

The kinetics study [38] utilized a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to measure the pathway branching ratios. The ability to eject selected masses and the extremely high mass resolution of this technique ensured that the observed CD3CH2 was in fact a primary product of the reaction. Temporal profiles from this reaction are shown in Fig. 1. Noticeably absent from the mass spectrum are the cations C2D2H3 and... [Pg.229]

The potential energy surface [47] for this reaction (Fig. 5) shows many potentially competitive pathways, labeled A-F, leading to the two most exothermic product channels. Many of these pathways can be isotopically separated by reaction of 02 with HCCO in normal abundance, as diagramed in Fig. 5. Zou and Osbom used time-resolved Fourier transform emission spectroscopy to detect the CO and CO2 products of this reaction [47]. Rotationally resolved infrared (IR) spectroscopy can easily identify all the possible isotopologs. For example. Fig. 6 shows a single... [Pg.234]

Figure 6. Time-resolved Fourier transform emission spectrum in the CO2 asymmetric stretch region from the HCCO + 02 reaction. Only signal from is observed. The fit to the data is... Figure 6. Time-resolved Fourier transform emission spectrum in the CO2 asymmetric stretch region from the HCCO + 02 reaction. Only signal from is observed. The fit to the data is...
Fourier Transform IR Studies of Surface Adsorbates and Surface-Mediated Reactions... [Pg.435]

Reaction products can also be identified by in situ infrared reflectance spectroscopy (Fourier transform infrared reflectance spectroscopy, FTIRS) used as single potential alteration infrared reflectance spectroscopy (SPAIRS). This method is suitable not only for obtaining information on adsorbed products (see below), but also for observing infrared (IR) absorption bands due to the products immediately after their formation in the vicinity of the electrode surface. It is thus easy to follow the production of CO2 versus the oxidation potential and to compare the behavior of different electrocatalysts. [Pg.76]

It is only since 1980 that in situ spectroscopic techniques have been developed to obtain identification of the adsorbed intermediates and hence of reliable reaction mechanisms. These new infrared spectroscopic in situ techniques, such as electrochemically modulated infrared reflectance spectroscopy (EMIRS), which uses a dispersive spectrometer, Fourier transform infrared reflectance spectroscopy, or a subtractively normalized interfacial Fourier transform infrared reflectance spectroscopy (SNIFTIRS), have provided definitive proof for the presence of strongly adsorbed species (mainly adsorbed carbon monoxide) acting as catalytic poisons. " " Even though this chapter is not devoted to the description of in situ infrared techniques, it is useful to briefly note the advantages and limitations of such spectroscopic methods. [Pg.76]

There is little information available on their setting and structure. Bagby Greener (1985) used Fourier transform infrared spectroscopy (FTIR) to examine the cement-forming reaction between zinc oxide and a mixture of EBA and n-hexyl vanillate. Although they found evidence for reaction between zinc oxide and EBA, they were unable to find any for reaction between zinc oxide and n-hexyl vanillate because of peak overlaps, the minor concentration of n-hexyl vanillate and the subtle nature of the spectral changes. [Pg.343]

At present, most workers hold a more realistic view of the promises and difficulties of work in electrocatalysis. Starting in the 1980s, new lines of research into the state of catalyst surfaces and into the adsorption of reactants and foreign species on these surfaces have been developed. Techniques have been developed that can be used for studies at the atomic and molecular level. These techniques include the tunneling microscope, versions of Fourier transform infrared spectroscopy and of photoelectron spectroscopy, differential electrochemical mass spectroscopy, and others. The broad application of these techniques has considerably improved our understanding of the mechanism of catalytic effects in electrochemical reactions. [Pg.553]

The results indicated that the reaction time of 1 h was insufficient for the total reduction of gold. Figure 3 shows the Fourier transformed EXAFS of both a bulk gold(O) sample and nanoparticles produced by the reduction of tetrachloroaurate by oat biomass. [Pg.405]

Chen YX, Ye S, Heinen M, Jusys Z, Osawa M, Behm RJ. 2006b. Application of in-situ attenuated total refiection—Fourier transform infimed spectroscopy for the understanding of complex reaction mechanism and kinetics Formic acid oxidation on a Pt film electrode at elevated temperatures. J Phys Chem B 110 9534-9544. [Pg.200]

The interaction of dihalogen molecules XY with different acceptors B quite often leads to vicious chemical reactions. In most cases, the 1 1 complexes are extremely short-lived. To investigate these prereactive complexes experimentally in a collision-free environment, pulsed-nozzle, Fourier-transform microwave spectroscopy has turned out to be the ideal technique. Legon and coworkers prepared a large number of these complexes and performed detailed rotational spectroscopic analyses. Several series of simple molecules... [Pg.14]


See other pages where Fourier transform reactions is mentioned: [Pg.1619]    [Pg.412]    [Pg.54]    [Pg.140]    [Pg.300]    [Pg.224]    [Pg.387]    [Pg.260]    [Pg.628]    [Pg.228]    [Pg.276]    [Pg.12]    [Pg.341]    [Pg.79]    [Pg.403]    [Pg.107]    [Pg.236]    [Pg.117]    [Pg.436]    [Pg.464]    [Pg.21]    [Pg.246]    [Pg.105]    [Pg.355]    [Pg.463]    [Pg.349]   
See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Diffuse reflectance infrared Fourier transform reaction

Reaction transform

Setting reaction 163 Fourier transform infrared

Transformation reaction

© 2024 chempedia.info