Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formulation controlled environments

For the dissolution test to be used as an effective drug product characterization and quality control tool, the method must be developed with the various end uses in mind. In some cases, the method used in the early phase of product and formulation development could be different from the final test procedure utilized for control of the product quality. Methods used for formulation screening or BA and/or bioequivalency evaluations may simply be impractical for a quality control environment. It is essential that with the accumulation of experience, the early method be critically re-evaluated and potentially simplified, giving preference to compendial apparatus and media. Hence, the final dissolution method submitted for product registration may not necessarily closely imitate the in vivo environment but should still test the key performance indicators of the formulation. [Pg.353]

Johnson, R.M. and A.B. Pepperman (1995b). Mobility of atrazine from alginate controlled release formulations. J. Environ. Sci. Health B, 30 21-A1. [Pg.379]

The study of the efficacy and behaviour of different products and their formulations has evolved through purely empirical field trials, into various controlled environment or laboratory screening methods, to more detailed fundamental and mechanistic studies, leading to the development of models for the processes of deposition, retention, uptake and translocation [3]. This overview will consider these processes, their limitations, and their future potential. Due to the fact that most studies have been with herbicides into plants, with little or no information on uptake of pesticides by insects or padiogens, the main focus will be on the uptake of herbicides into plant foliage. [Pg.238]

If target pressure is not met with an initial prostaglandin, it may be useful to switch to an alternative topical prostaglandin. However, there is little scientific evidence to support this approach. In fact, in a controlled environment there is little difference in efficiency among the various prostaglandin formulations. Although there are anecdotal reports of significantly different responses to treatment within individual patients, these results are clouded by issues of compliance with the initial treatment. [Pg.688]

Chan KLA, Kazarian SG. High-throughput study of poly(ethylene glycol)/ibuprofen formulations under controlled environment using FTIR imaging. J Comb Chem 2006 8(1) 26-31. [Pg.415]

The provision of sterile areas in a packaging and formulation plant means that such a plant may cost as much as a conventional manufacturing plant for the active ingredient. The tableting and packaging equipment are relatively inexpensive, and most of the money is spent on equipment to produce a controlled environment. [Pg.906]

Macro ATR-FT-IR approach included the imaging of many different pharmaceutical formulations under a controlled environment, as well as simultaneous studies of the dissolution of several formulations in separate microchannels [33]. [Pg.369]

The solubihty characteristics of sodium acyl isethionates allow them to be used in synthetic detergent (syndet) bars. Complex blends of an isethionate and various soaps, free fatty acids, and small amounts of other surfactants reportedly are essentially nonirritant skin cleansers (66). As a rule, the more detersive surfactants, for example alkyl sulfates, a-olefin sulfonates, and alkylaryl sulfonates, are used in limited amounts in skin cleansers. Most skin cleansers are compounded to leave an emollient residue on the skin after rinsing with water. Free fatty acids, alkyl betaines, and some compatible cationic or quaternary compounds have been found to be especially useful. A mildly acidic environment on the skin helps control the growth of resident microbial species. Detergent-based skin cleansers can be formulated with abrasives to remove scaly or hard-to-remove materials from the skin. [Pg.299]

Activation by a metal surface also takes place in the commercially important anaerobic adhesives. These one-part adhesives are stable in the package, but cure quickly in an oxygen-free environment such as a tightly controlled bond line. Important applications include thread-locking, sealing, retaining, and some structural bonding [111]. A representative model formulation has recently been described [112] (Fig. 3). [Pg.838]

The main purpose of pesticide formulation is to manufacture a product that has optimum biological efficiency, is convenient to use, and minimizes environmental impacts. The active ingredients are mixed with solvents, adjuvants (boosters), and fillers as necessary to achieve the desired formulation. The types of formulations include wettable powders, soluble concentrates, emulsion concentrates, oil-in-water emulsions, suspension concentrates, suspoemulsions, water-dispersible granules, dry granules, and controlled release, in which the active ingredient is released into the environment from a polymeric carrier, binder, absorbent, or encapsulant at a slow and effective rate. The formulation steps may generate air emissions, liquid effluents, and solid wastes. [Pg.70]

Eleven controlled diet and environment experiments have been designed in a way that can be used to investigate the effects of protein nutrition and heat and/or water stress on diet-tissue A N. Laboratory rats were raised on purified, pelletized diets in which the isotopic composition of proteins, lipids and carbohydrates were well characterized and their proportions accurately and precisely measured (Ambrose and Norr 1993). Four experiments involved manipulation of temperature and/or water availability. Of these four experiments, one used a diet with high (70%) protein concentrations and heat/water stress (36°C) and three used normal (20%) protein concentrations. Seven experiments were conducted at normal temperature (21°C) with water ad libitum. Of these seven experiments, two used diets formulated with veiy low protein (5%), three with normal protein and two with high protein concentrations. [Pg.248]

The environmental fate and behavior of compounds depends on their physical, chemical, and biochemical properties. Individual OPs differ considerably from one another in their properties and, consequently, in their environmental behavior and the way they are used as pesticides. Pesticide chemists and formulators have been able to exploit the properties of individual OPs in order to achieve more effective and more environment-friendly pest control, for example, in the development of compounds like chlorfenviphos, which has enough stability and a sufficiently low vapor pressure to be effective as an insecticidal seed dressing, but, like other OPs, is readily biodegradable thus, it was introduced as a more environment-friendly alternative to persistent OCs as a seed dressing. [Pg.196]

A current area of interest is the use of AB cements as devices for the controlled release of biologically active species (Allen et al, 1984). AB cements can be formulated to be degradable and to release bioactive elements when placed in appropriate environments. These elements can be incorporated into the cement matrix as either the cation or the anion cement former. Special copper/cobalt phosphates/selenates have been prepared which, when placed as boluses in the rumens of cattle and sheep, have the ability to decompose and release the essential trace elements copper, cobalt and selenium in a sustained fashion over many months (Chapter 6). Although practical examples are confined to phosphate cements, others are known which are based on a variety of anions polyacrylate (Chapter 5), oxychlorides and oxysulphates (Chapter 7) and a variety of organic chelating anions (Chapter 9). The number of cements available for this purpose is very great. [Pg.3]

Fourteen formulations of chemical alternatives were submitted to EPA under confidentiality and they were assessed based on numerous human health and ecotoxicity endpoints in addition to bioaccumulation potential and environmental persistence. They were also screened for potential exposure to workers, users and the aquatic environment. Where data gaps existed, EPA experts used models and chemical analogs to estimate the hazard for a particular endpoint. The literature and test data reviews were published in the final report, Environmentally Preferable Options for Furniture Fire Safety Low Density Furniture Foam . In addition, each hazard endpoint was ranked with a concern level (High, Moderate or Low) based on the criteria used by the EPA s New Chemicals Program to rate the concern level of new chemicals submitted under the Toxic Substance Control Act (TSCA). As seen in Figure 8.2, where the hazard endpoint rankings are bold, the value is based on experimental data. Where the hazard endpoints are presented in italic font, the value is estimated based on models or chemical analogs. In this way, detailed hazard information was summarized and presented in a clear and concise format. [Pg.285]


See other pages where Formulation controlled environments is mentioned: [Pg.446]    [Pg.241]    [Pg.106]    [Pg.327]    [Pg.3273]    [Pg.173]    [Pg.905]    [Pg.295]    [Pg.367]    [Pg.367]    [Pg.368]    [Pg.373]    [Pg.241]    [Pg.735]    [Pg.905]    [Pg.392]    [Pg.431]    [Pg.432]    [Pg.437]    [Pg.199]    [Pg.174]    [Pg.147]    [Pg.1092]    [Pg.352]    [Pg.1045]    [Pg.227]    [Pg.341]    [Pg.368]    [Pg.381]    [Pg.94]    [Pg.952]    [Pg.230]    [Pg.264]    [Pg.445]   
See also in sourсe #XX -- [ Pg.735 ]




SEARCH



Environment Formulation

Environment controlled

© 2024 chempedia.info