Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formate oxygen uptake

A.ctive driers promote oxygen uptake, peroxide formation, and peroxide decomposition. At an elevated temperature several other metals display this catalytic activity but are ineffective at ambient temperature. Active driers include cobalt, manganese, iron, cerium, vanadium, and lead. [Pg.221]

Probably the most comprehensive measurements of the effect of voids on rates are those of Cohen "" and his school. They have published data on the oxidation of pure irons for a wide temperature range and for oxygen pressures ranging from 1-3 x 10 "N/m to lOOkN/m. The interactions between void formation and oxygen uptake are complex but only at pressures below 1 3 X 10 N/m do voids have no effect. Some of their results are summarised in Fig. 1.85 over the pressure range 1-3 x 10 N/m to... [Pg.275]

Apparent activation energies for the catalytic reactions were as expected about 80 kJ/mol for the formation of formaldehyde and 60 kJ/mol for the formation of acetaldehyde from the respective alcohols (Figure 3). The turnover rates of the samples were calculated either on the basis of the number of vanadiums (all of which could be assumed to be accessible) or by assuming that oxygen uptake counted the catalytic sites ... [Pg.339]

Figure 3. Arrhenius plots for the formation of formaldehyde or acetaldehyde from methanol or ethanol, normalized by the number of vanadiums (open symbols) and by the amount of oxygen uptake measured at 625 K (filled symbols). Lines on the right panel are calculated from the data reported by Oyama and Somorjai [11]. Figure 3. Arrhenius plots for the formation of formaldehyde or acetaldehyde from methanol or ethanol, normalized by the number of vanadiums (open symbols) and by the amount of oxygen uptake measured at 625 K (filled symbols). Lines on the right panel are calculated from the data reported by Oyama and Somorjai [11].
Thermal reduction at 623 K by means of CO is a common method of producing reduced and catalytically active chromium centers. In this case the induction period in the successive ethylene polymerization is replaced by a very short delay consistent with initial adsorption of ethylene on reduce chromium centers and formation of active precursors. In the CO-reduced catalyst, CO2 in the gas phase is the only product and chromium is found to have an average oxidation number just above 2 [4,7,44,65,66], comprised of mainly Cr(II) and very small amount of Cr(III) species (presumably as Q -Cr203 [66]). Fubini et al. [47] reported that reduction in CO at 623 K of a diluted Cr(VI)/Si02 sample (1 wt. % Cr) yields 98% of the silica-supported chromium in the +2 oxidation state, as determined from oxygen uptake measurements. The remaining 2 wt. % of the metal was proposed to be clustered in a-chromia-like particles. As the oxidation product (CO2) is not adsorbed on the surface and CO is fully desorbed from Cr(II) at 623 K (reduction temperature), the resulting catalyst acquires a model character in fact, the siliceous part of the surface is the same of pure silica treated at the same temperature and the anchored chromium is all in the divalent state. [Pg.11]

Schnurr et al. [22] showed that rabbit 15-LOX oxidized beef heart submitochondrial particles to form phospholipid-bound hydroperoxy- and keto-polyenoic fatty acids and induced the oxidative modification of membrane proteins. It was also found that the total oxygen uptake significantly exceeded the formation of oxygenated polyenoic acids supposedly due to the formation of hydroxyl radicals by the reaction of ubiquinone with lipid 15-LOX-derived hydroperoxides. However, it is impossible to agree with this proposal because it is known for a long time [23] that quinones cannot catalyze the formation of hydroxyl radicals by the Fenton reaction. Oxidation of intracellular unsaturated acids (for example, linoleic and arachidonic acids) by lipoxygenases can be suppressed by fatty acid binding proteins [24]. [Pg.808]

The microbial activity of wastewater under anoxic conditions is lower compared with aerobic conditions (Abdul-Talib et al., 2001). This is important to consider, because a low nitrate uptake rate (NUR) compared with the oxygen uptake rate (OUR) in units of electron equivalents means a reduced transformation rate of the most biodegradable fractions of the organic matter. As mentioned under the point on injection of air, this may have implications in terms of treatment. Furthermore, a relatively low NUR value also has operational advantages because of a reduced demand for nitrate to suppress sulfide formation. [Pg.154]

Andre et al. [8] discuss the determination of adenosine-5 -triphosphate by luciferin-luciferase assay. This method was applied to the determination of adenosine-5 -triphosphate in bacterial colonies filtered from samples of polluted water after incubation for different periods. The adenosine-5 -triphosphate was extracted from the residue in the filter and the amount compared with the biochemical oxygen demand of the filtered water. The oxygen uptake rate and the rate of formation of adenosine-5 -triphosphate were then plotted against time, the two curves being similar in up to three to four days incubation, after which adenosine-5 -triphosphate production declined markedly, although oxygen uptake continued to increase. [Pg.194]

Off-gas analysis is widely used in many industrial fermentation plants to determine the cellular activity of growing cultures by monitoring respiration. One can measure oxygen uptake and CO2 production rates and thus measure metabolic activity/9 In addition, off-gas analysis is also used for monitoring other volatiles, the synthesis of which are strongly dependent on cultivation conditions 10 and product formation. 11 Off-gas estimation and control therefore serves as an indirect method for process analysis and control. [Pg.423]

The ultimate biodegradability of a substrate, such as is depicted in Figure 4, may, in addition to oxygen uptake, be measured by disappearance of organic carbon, CO2 evolution and the formation of water. A radiotracer approach provides a more accurate determination and is the only feasible way of measuring the formation of water in the aqueous medium required for all metabolic processes. [Pg.98]

In this paper the fundamental aspects of process development for the production of core and virus-like particles with baculovirus infected insect cells are reviewed. The issues addressed include particle formation and monomer composition, chemical and physical conditions for optimal cell growth, baculovirus replication and product expression, multiplicity of infection strategy, and scale-up of the process. Study of the differences in the metabolic requirements of infected and non-infected cells is necessary for high cell density processes. In the bioreactor, the specific oxygen uptake rate (OURsp) plays a central role in process scale-up, leading to the specification of the bioreactor operational parameters. Shear stress can also be an important variable for bioreactor operation due to its influence on cell growth and product expression. [Pg.183]

Monolayer coverage of vanadium oxide on tin oxide support was determined by a simple method of low temperature oxygen chemisorption and was supported by solid-state NMR and ESR techniques. These results clearly indicate the completion of a monolayer formation at about 3.2 wt.% V2O5 on tin oxide support (30 m g" surface area). The oxygen uptake capacity of the catalysts directly correlates with their catalytic activity for the partial oxidation of methanol confirming that the sites responsible for oxygen chemisorption and oxidation activity are one and the same. The monolayer catalysts are the best partial oxidation catalysts. [Pg.215]

The liquid-phase oxidation of acrolein (AL), the reaction products, their routes of formation, reaction in the absence or presence of catalysts such as acetylacetonates (acac) and naphthenates (nap) of transition metals and the influence of reaction factors were discussed in an earlier paper (22). The coordinating state of cobalt acetylacetonate in the earlier stage of the reaction depends on the method of addition to the reaction system (25, 26). The catalyst, Co(acac)2-H20-acrolein, which was synthesized by mixing a solution of Co(acac)2 in benzene with a saturated aqueous solution, decreases the induction period of oxygen uptake and increases the rate of oxygen absorption. The acrolein of the catalyst coordinated with its cobalt through the lone pair of electrons of the aldehyde oxygen. Therefore, it is believed that the coordination of acrolein with a catalyst is necessary to initiate the oxidation reaction (10). [Pg.133]


See other pages where Formate oxygen uptake is mentioned: [Pg.69]    [Pg.69]    [Pg.389]    [Pg.260]    [Pg.2139]    [Pg.89]    [Pg.355]    [Pg.360]    [Pg.361]    [Pg.365]    [Pg.8]    [Pg.72]    [Pg.444]    [Pg.374]    [Pg.164]    [Pg.83]    [Pg.92]    [Pg.78]    [Pg.185]    [Pg.237]    [Pg.221]    [Pg.532]    [Pg.135]    [Pg.204]    [Pg.209]    [Pg.209]    [Pg.210]    [Pg.213]    [Pg.69]    [Pg.510]    [Pg.106]    [Pg.209]    [Pg.48]    [Pg.632]    [Pg.443]    [Pg.63]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Oxygen uptake

Oxygen, formation

Oxygenates formation

© 2024 chempedia.info