Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen chemisorption

Summarizing, we may state that by the migration of metal atoms (ions) onto and over oxide (or other) layers formed by chemisorption, oxygen (or other atoms or ions) may be incorporated into the metal lat-... [Pg.96]

Restructuring of a surface may occur as a phase change with a transition temperature as with the Si(OOl) surface [23]. It may occur on chemisorption, as in the case of oxygen atoms on a stepped Cu surface [24]. The reverse effect may occur The surface layer for a Pt(lOO) face is not that of a terminal (100) plane but is reconstructed to hexagonal symmetry. On CO adsorption, the reconstruction is lifted, as shown in Fig. XVI-8. [Pg.687]

Perhaps the most fascinating detail is the surface reconstruction that occurs with CO adsorption (see Refs. 311 and 312 for more general discussions of chemisorption-induced reconstructions of metal surfaces). As shown in Fig. XVI-8, for example, the Pt(lOO) bare surface reconstructs itself to a hexagonal pattern, but on CO adsorption this reconstruction is lifted [306] CO adsorption on Pd( 110) reconstructs the surface to a missing-row pattern [309]. These reconstructions are reversible and as a result, oscillatory behavior can be observed. Returning to the Pt(lOO) case, as CO is adsorbed patches of the simple 1 x 1 structure (the structure of an undistorted (100) face) form. Oxygen adsorbs on any bare 1 x 1 spots, reacts with adjacent CO to remove it as CO2, and at a certain point, the surface reverts to toe hexagonal stmcture. The presumed sequence of events is shown in Fig. XVIII-28. [Pg.737]

Chemisorption occurs when the attractive potential well is large so that upon adsorption a strong chemical bond to a surface is fonued. Chemisorption involves changes to both the molecule and surface electronic states. For example, when oxygen adsorbs onto a metal surface, a partially ionic bond is created as charge transfers from the substrate to the oxygen atom. Other chemisorbed species interact in a more covalent maimer by sharing electrons, but this still involves perturbations to the electronic system. [Pg.294]

Jensen F, Besenbacher F, Laesgaard E and Stensgaard I 1990 Surface reconstruction of Cu (110) induced by oxygen chemisorption Phys. Rev. B 41 10 233... [Pg.317]

Duarte H A and Salahub D R 1998 Embedded cluster model for chemisorption using density functional calculations oxygen adsorption on the AI(IOO) surface J. Chem. Phys. 108 743... [Pg.2236]

Wang L S, Wu FI and Desai S R 1996 Sequential oxygen atom chemisorption on surfaces of small iron clusters Phys. Rev. Lett. 76 4853... [Pg.2407]

The active site on the surface of selective propylene ammoxidation catalyst contains three critical functionalities associated with the specific metal components of the catalyst (37—39) an a-H abstraction component such as Sb ", or Te" " an olefin chemisorption and oxygen or nitrogen insertion component such as Mo " or and a redox couple such as Fe " /Fe " or Ce " /Ce" " to enhance transfer of lattice oxygen between the bulk and surface... [Pg.183]

Only the surface layers of the catalyst soHd ate generaHy thought to participate in the reaction (125,133). This implies that while the bulk of the catalyst may have an oxidation state of 4+ under reactor conditions, the oxidation state of the surface vanadium may be very different. It has been postulated that both V" " and V " oxidation states exist on the surface of the catalyst, the latter arising from oxygen chemisorption (133). Phosphoms enrichment is also observed at the surface of the catalyst (125,126). The exact role of this excess surface phosphoms is not weH understood, but it may play a role in active site isolation and consequently, the oxidation state of the surface vanadium. [Pg.454]

CO oxidation catalysis is understood in depth because potential surface contaminants such as carbon or sulfur are burned off under reaction conditions and because the rate of CO oxidation is almost independent of pressure over a wide range. Thus ultrahigh vacuum surface science experiments could be done in conjunction with measurements of reaction kinetics (71). The results show that at very low surface coverages, both reactants are adsorbed randomly on the surface CO is adsorbed intact and O2 is dissociated and adsorbed atomically. When the coverage by CO is more than 1/3 of a monolayer, chemisorption of oxygen is blocked. When CO is adsorbed at somewhat less than a monolayer, oxygen is adsorbed, and the two are present in separate domains. The reaction that forms CO2 on the surface then takes place at the domain boundaries. [Pg.176]

Many chemical elements exhibit catalytic activity (5) which, within limits, is inversely related to the strength of chemisorption of the VOCs and oxygen, provided that adsorption is sufficiently strong to achieve a high surface coverage (17). If the chemisorption is too strong, the catalyst is quickly deactivated as the active sites become irreversibly covered. If the chemisorption is too weak, only a small fraction of the surface is covered and the activity is very low (17) (Fig. 2). [Pg.502]

Fischer-Tropsch ohgomerization of CO -1- H9 to make hydrocarbons and oxygenated compounds was originally catalyzed by cobalt, which forms the active carbonyl, but now iron promoted by potassium is favored. Dissociative chemisorption of CO has been observed in this process. [Pg.2094]

Although considerable study has been devoted to oxygen chemisorption (mainly on platinum) there is considerable ambiguity in the surface stoichiometry of the reaction. In some cases Pt20 is formed, in others PtO, the particular compound... [Pg.741]

Many inorganic compounds and all organic compounds also react directly with O2 under appropriate conditions. Reaction may be spontaneous, or may require initiation by heat, light, electric discharge, chemisorption or various catalytic means. Oxygen is normally considered to be divalent, though the oxidation state can vary widely and includes the values of - -i, 0, —j, —j, —I and —2 in isolable compounds of such species as 02", O3, 03 , 02 , 02 and respectively. The coor-... [Pg.612]

Chemisorption of atomic oxygen to form a partial or complete monolayer. [Pg.23]

Further chemisorption of atomic oxygen into a second layer and/or further physical adsorption of Oj. [Pg.23]

Figure 2.14. The molecular orbitals of gas phase carbon monoxide, (a) Energy diagram indicating how the molecular orbitals arise from the combination of atomic orbitals of carbon (C) and oxygen (O). Conventional arrows are used to indicate the spin orientations of electrons in the occupied orbitals. Asterisks denote antibonding molecular orbitals, (b) Spatial distributions of key orbitals involved in the chemisorption of carbon monoxide. Barring indicates empty orbitals.5 (c) Electronic configurations of CO and NO in vacuum as compared to the density of states of a Pt(lll) cluster.11 Reprinted from ref. 11 with permission from Elsevier Science. Figure 2.14. The molecular orbitals of gas phase carbon monoxide, (a) Energy diagram indicating how the molecular orbitals arise from the combination of atomic orbitals of carbon (C) and oxygen (O). Conventional arrows are used to indicate the spin orientations of electrons in the occupied orbitals. Asterisks denote antibonding molecular orbitals, (b) Spatial distributions of key orbitals involved in the chemisorption of carbon monoxide. Barring indicates empty orbitals.5 (c) Electronic configurations of CO and NO in vacuum as compared to the density of states of a Pt(lll) cluster.11 Reprinted from ref. 11 with permission from Elsevier Science.
It is also clear that in the present case oxygen is the electron acceptor (A) while CO is the electron donor (D). It has been already discussed that CO is an amphoteric adsorbent, i.e., its chemisorptive bond involves both electron donation and backdonation and that, in most cases, its electron acceptor character dominates. However, in presence of the coadsorbed strong electron acceptor O (see section 2.5.2.1) it always behaves as an electron donor. [Pg.74]

The mode of chemisorption of CO is a key-factor concerning selectivity to various products. Hydrocarbons can only be produced if the carbon-oxygen bond is broken, whereas this bond must stay intact for the formation of oxygenates. It is obvious that catalysts favoring the production of hydrocarbons must chemisorb carbon monoxide dissociatively (e.g. Fe) while those favoring the formation of oxygenates must be able to chemisorb carbon monoxide molecularly (e.g. Rh). [Pg.78]

This is easy to understand In the former case the backspillover species (O2 ) is also a reactant in the catalytic reaction. Thus as its coverage on the catalyst surface increases during a galvanostatic transient its rate of consumption with C2H4 also increases and at steady state its rate of consumption equals its rate of creation, I/2F. This means that the backspillover O2 species reacts with the fuel (e.g. C2H4) at a rate which is A times slower than the rate of reaction of more weakly bonded chemisorbed oxygen formed via gaseous chemisorption. [Pg.137]

It is important to notice that the work function, , of a given solid surface changes significantly with chemisorption. Thus oxygen chemisorption on transition metal surfaces causes up to 1 eV increase in while alkali chemisorption on transition metal surfaces causes up to 3 eV decrease in . In general electronegative, i.e. electron acceptor adsorbates cause an increase in 0 while electropositive, i.e. electron donor adsorbates cause a decrease in 0. Note that in the former case the dipole vector P formed by the adsorbate and the surface points to the vacuum while in the latter case P points to the surface (Fig. 4.20). [Pg.138]

This linear variation in catalytic activation energy with potential and work function is quite noteworthy and, as we will see in the next sections and in Chapters 5 and 6, is intimately linked to the corresponding linear variation of heats of chemisorption with potential and work function. More specifically we will see that the linear decrease in the activation energies of ethylene and methane oxidation is due to the concomitant linear decrease in the heat of chemisorption of oxygen with increasing catalyst potential and work function. [Pg.164]

As already noted the strength of chemisorptive bonds can be varied in situ via electrochemical promotion. This is the essence of the NEMCA effect. Following initial studies of oxygen chemisorption on Ag at atmospheric pressure, using isothermal titration, which showed that negative potentials causes up to a six-fold decrease in the rate of 02 desorption,11 temperature programmed desorption (TPD) was first used to investigate NEMCA.29... [Pg.170]

Increasing catalyst potential and work function leads to a pronounced increase in total oxygen coverage (which approaches unity even at elevated temperatures) and causes the appearance of new chemisorption states. At least two such states are created on Pt/YSZ (Fig. 4.43) A strongly bonded one which, as discussed in Chapter 5, acts as a sacrificial promoter during catalytic oxidations, and a weakly bonded one which is highly reactive and causes the observed dramatic increase in catalytic rate. [Pg.172]

As discussed in detail in Chapter 5 this is not a coincidence. Similar is the behaviour of oxygen chemisorption on Ag31,119 and on Au119 and the Ed vs is in agreement with rigorous cluster quantum mechanical calculations.120,121... [Pg.174]

S. Bebelis, and C.G. Vayenas, Non-Faradaic Electrochemical Modification of Catalytic Activity 5. Oxygen Chemisorption on Silver,/. Catal. 138, 570-587 (1992). [Pg.183]


See other pages where Oxygen chemisorption is mentioned: [Pg.89]    [Pg.343]    [Pg.89]    [Pg.343]    [Pg.600]    [Pg.694]    [Pg.703]    [Pg.713]    [Pg.82]    [Pg.9]    [Pg.345]    [Pg.186]    [Pg.200]    [Pg.378]    [Pg.1175]    [Pg.1188]    [Pg.37]    [Pg.47]    [Pg.47]    [Pg.61]    [Pg.76]    [Pg.84]    [Pg.170]    [Pg.172]    [Pg.172]    [Pg.174]   
See also in sourсe #XX -- [ Pg.75 , Pg.76 , Pg.77 , Pg.78 ]

See also in sourсe #XX -- [ Pg.19 ]

See also in sourсe #XX -- [ Pg.280 ]




SEARCH



Cellulose char oxygen chemisorption

Characterization oxygen chemisorption

Chemisorption of oxygen

Chemisorption of oxygen on cuprous oxide

Chemisorption of oxygen on gold surfaces

Low-temperature oxygen chemisorptions

Nickel oxygen chemisorption

Oxygen chemisorption bond, nature

Oxygen chemisorption energy

Oxygen chemisorption measurement

Oxygen chemisorption measurement procedure

Oxygen chemisorption metals (

Oxygen chemisorption on metals

Oxygen chemisorption on nickel

Oxygen chemisorption oxides

Oxygen chemisorption, cellulose

Oxygen, chemisorption adsorption

Oxygen, chemisorption alcohols

Oxygen, chemisorption allylations

Oxygen, chemisorption catalysts

Oxygen, chemisorption hydrogenation

Oxygen, chemisorption oxidation

Oxygen, chemisorption removal

Oxygen, chemisorption selective

Oxygen, chemisorption thiophenes

Oxygen, chemisorption toluene

The Chemisorption of Oxygen

© 2024 chempedia.info