Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluoropolymers copolymers

Proton Exchange Membrane (PEM), commonly synonymous with DuPont s Nation membrane and used in both PEM fuel cells and DMFCs, requires aqueous conditions for suitable ionic conductivity and therefore needs insulation against freezing, and requires rigorous humidity control. Although other membrane chemistries are available, the sulfonated tetrafluoroethylene-based fluoropolymer-copolymer chemistry used in Naflon and other brand name membranes is still the material of choice. [Pg.180]

The heart of the PEM fuel cell is the proton exchange membrane, which transports protons from the anode to the cathode. The membrane also serves to separate the fuel and oxidant gas phases and electronically insulates the cathode from the anode. The most typical membrane is a sulfonated per-fluorinated polymer. The Nation family of membranes made by DuPont is representative of this class, and is based on a sulfonated tetrafluoroethylene-based fluoropolymer-copolymer, with the chemical structure represented in Figure 1.2. The sulfonic acid (SO3H) groups on the side chains allow the protons or other cations to "hop" from one acid site to another, in the presence of water. The exact mechanism of the proton movement is an area of significant research. An active area of research is the development of hydrocarbon-based... [Pg.16]

NAFION = Sulfonated tetrafluoroethylene based fluoropolymer-copolymer (DuPont). [Pg.190]

After 10 years of unabated rapid growth in the plenum wire and cable market, fluoropolymers including PVDE, primarily the flexible VDE/HEP copolymer, are beginning to lose market share to lower priced PVC-akoys. The loss of market share in the plenum market probably wkl be compensated by growth of PVDE in other fields thus during the mid-1990s the total volume of PVDE may not grow (188). [Pg.388]

Among the preformed polymers cured by minor additions of aHyl ester monomers and catalysts followed by heat or irradiation are PVC cured by diallyl fumarate (82), PVC cured by diallyl sebacate (83), fluoropolymers cured by triaHyl trimeUitate (84), and ABS copolymers cured by triaUyl trimeUitate (85). [Pg.87]

In 1972 Du Pont introduced Teflon PFA, a copolymer of tetrafluoroethylene and perfluorofpropyl vinyl ether) (CF2 = CFOCF2CF2CF3). Similar materials are now also produeed by Asahi Glass, Daikin, Hoechst and Monteflos and are commonly referred to as PFA fluoropolymers. In 1994 Hoechst introduced Hostaflon PFA-N, claimed to have significantly lower melt viscosities than earlier grades of material. [Pg.377]

Properties are similar to those of PTFE, and PFA fluoropolymers are generally considered to be the best melt-processable alternative to PTFE yet available. They are, however, more expensive than PTFE. Compared with the TFE-FEP copolymers such as Teflon I P the PFA fluoropolymers ... [Pg.377]

Somewhat between PTFE and PFA materials is the product Hostaflon TFM, which is a copolymer of TFE and a small amount of the perfluoro(propyl vinyl ether). It has improved impact strength and weldability and has been promoted as a suitable material for forming into bottles. Yet another TFE-perfluoroalkoxy copolymer was introduced by Du Pont in 1979 as Teflon EPE. This material had a somewhat lower melting point (295 °C) than the more common PFA fluoropolymers but it is no longer marketed. [Pg.378]

A 50 50 mol/mol copolymer of hexafluoroisobutylene (CH2 = C(CF3)2) and vinylidene fluoride was made available by Allied Chemical in the mid-1970s as CM-1 Fluoropolymer. The polymer has the same crystalline melting point as PTFE (327°C) but a mueh lower density (1.88g/cm ). It has excellent chemical resistance, electrical insulation properties and non-stiek characteristics and, unlike PTFE, may be injeetion moulded (at 380°C). It is less tough than PTFE. [Pg.379]

The types of polymers that are used as release coatings include silicone networks, silicone containing copolymers, polymers with long alkyl or fluoroalkyl side chains, fluoropolymers, and polyolefins. These polymers have surface energies that are less than the surface energies of commonly used PSAs, an important feature of release materials. [Pg.536]

Temperature dependence (related to the temperature dependence of the conformational structure and the morphology of polymers) of the radiation effect on various fluoropolymers e.g., poly (tetrafluoroethylene-co-hexafluoropropylene), poly(tetrafluoroethylene-co-perfluoroalkylvinylether), and poly(tetrafluoroethylene-co-ethylene) copolymers has been reported by Tabata [419]. Hill et al. [420] have investigated the effect of environment and temperature on the radiolysis of FEP. While the irradiation is carried out at temperatures above the glass transition temperature of FEP, cross-linking reactions predominate over chain scission or degradation. Forsythe et al. [421]... [Pg.894]

Since PTFE was first synthesized more than 50 years ago, fluoropolymers have been produced by radical polymerization and copolymerizaton processes, but without any functional groups, for several reasons. First, the synthesis of functional vinyl compounds suitable for radical polymerization is much more complicated and expensive in comparison with common fluoroolefins. In radical polymerization of one of the simplest possible candidates—perfluorovinyl sulfonic acid (or sulfonyl fluoride—there was not enough reactivity to provide high-molecular-weight polymers or even perfluorinated copolymers with considerable functional comonomer content. Several methods for the synthesis of the other simplest monomer—trifluoroacrylic acid or its esters—were reported,1 but convenient improved synthesis of these compounds as well as radical copolymerization with TFE induced by y-irradiation were not described until 1980.2... [Pg.92]

Many vinyl monomers were reported to have been grafted onto fluoropolymers, such as (meth)acrylic acid and (meth)acrylates, acrylamide, acrylonitryl, styrene, 4-vinyl pyridine, N-vinyl pyrrolidone, and vinyl acetate. Many fluoropolymers have been used as supports, such as PTFE, copolymers of TFE with HFP, PFAVE, VDF and ethylene, PCTFE, PVDF, polyvinyl fluoride, copolymers ofVDF with HFP, vinyl fluoride and chlorotrifluoroethylene (CTFE). The source of irradiation has been primarily y-rays and electron beams. The grafting can be carried out under either direct irradiation or through the use of preliminary irradiated fluoropolymers. Ordinary radical inhibitors can be added to the reaction mixture to avoid homopolymerization of functional monomers. [Pg.94]

It is a well-known fact that the mechanical properties of fluoropolymers, especially perfluoropolymers, degrade dramatically under irradiation. Nevertheless a considerable improvement of the mechanical properties of the final grafted copolymers was observed in comparison with mechanical properties of the initial irradiated fluoropolymer. Thus it is possible to minimize or completely avoid the degradation of mechanical properties of the final grafted composites in comparison with the initial fluoropolymers by choosing appropriate reaction conditions. [Pg.95]

Modem membranes usually consist of at least two layers one from sulfonic type copolymer and another from carboxylic type copolymer. The membranes are usually reinforced by fluoropolymer fabric to provide better mechanical properties and long lifetimes. The most important properties are considered in detail in the reviews mentioned above10,11 and in a basic text by Seko et al.6... [Pg.96]

As was shown, the rate of graft polymerization and the composition of grafted copolymers depend on the monomer concentration, temperature, and the composition of fluorpolymer support. The former also depends on the dose of previous irradiation of the fluoropolymer support. It was assumed that the structure of the composites obtained is close to the core-shell type. [Pg.97]

CF20—)m (—CF2CF20—) . This fluoropolymer has better low-temperature properties than Krytox, but is more expensive. Fomblin Z is made by photochemical polymerization of a mixture of oxygen and tetrafluoroethylene to prepare the random copolymer. The methylene oxide unit (—CF20—) imparts even more extraordinary low-temperature properties than those derived from vibration and free rotation of other perfluoroether linkages. [Pg.213]

In discussing fluoropolymers one has to mention also the fluororubbers, which are mostly copolymers of fluoromonomers and common rubbers. They are also much in demand by industry, owing to the fact that while they retain the traditional features of rubber—elasticity and tensile strength—they have high chemical- and thermal-resistance and low friction. [Pg.228]

Over the last decade, selected papers1114 have examined the deposition of fluoropolymers, using RF magnetron sputtering. All of these papers have examined the deposition of PTFE, with some of them2314 also studying the deposition of polyimide (PI) films. This chapter extends these studies and will report on the sputter deposition behavior of PTFE (polytetrafluoroethylene), PVDF (polyvinylidenefluoride), and FEP (fluorinated ethylene propylene copolymer) films. [Pg.314]

HorsfaU, J. A. and LoveU, K. V. 2002. Comparison of fuel cell performance of selected fluoropolymer and hydrocarbon based grafted copolymers incorporating acrylic acid and styrene sulfonic acid. Polymers for Advanced Technologies 13 381-390. [Pg.175]

Shi, Z. Q. and Holdcroft, S. 2004. Synthesis of block copolymers possessing fluoropolymer and nonfluoropolymer segments by radical polymerization. [Pg.182]

For instance, the Dow experimental membrane and the recently introduced Hyflon Ion E83 membrane by Solvay-Solexis are "short side chain" (SSC) fluoropolymers, which exhibit increased water uptake, significantly enhanced proton conductivity, and better stability at T > 100°C due to higher glass transition temperatures in comparison to Nafion. The membrane morphology and the basic mechanisms of proton transport are, however, similar for all PFSA ionomers mentioned. The base polymer of Nation, depicted schematically in Figure 6.3, consists of a copolymer of tetrafluoro-ethylene, forming the backbone, and randomly attached pendant side chains of perfluorinated vinyl ethers, terminated by sulfonic acid head groups. °... [Pg.353]


See other pages where Fluoropolymers copolymers is mentioned: [Pg.82]    [Pg.123]    [Pg.394]    [Pg.37]    [Pg.82]    [Pg.123]    [Pg.394]    [Pg.37]    [Pg.389]    [Pg.103]    [Pg.1111]    [Pg.554]    [Pg.721]    [Pg.76]    [Pg.94]    [Pg.95]    [Pg.95]    [Pg.97]    [Pg.99]    [Pg.194]    [Pg.195]    [Pg.94]    [Pg.95]    [Pg.95]    [Pg.97]   
See also in sourсe #XX -- [ Pg.304 ]




SEARCH



Fluoropolymer

Fluoropolymers

© 2024 chempedia.info