Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorescence spectroscopy sensitivity

The attachment of pyrene or another fluorescent marker to a phospholipid or its addition to an insoluble monolayer facilitates their study via fluorescence spectroscopy [163]. Pyrene is often chosen due to its high quantum yield and spectroscopic sensitivity to the polarity of the local environment. In addition, one of several amphiphilic quenching molecules allows measurement of the pyrene lateral diffusion in the mono-layer via the change in the fluorescence decay due to the bimolecular quenching reaction [164,165]. [Pg.128]

X-Ray Fluorescence analysis (XRF) is a well-established instrumental technique for quantitative analysis of the composition of solids. It is basically a bulk evaluation method, its analytical depth being determined by the penetration depth of the impinging X-ray radiation and the escape depth of the characteristic fluorescence quanta. Sensitivities in the ppma range are obtained, and the analysis of the emitted radiation is mosdy performed using crystal spectrometers, i.e., by wavelength-dispersive spectroscopy. XRF is applied to a wide range of materials, among them metals, alloys, minerals, and ceramics. [Pg.349]

Fluorescence spectroscopy offers several inherent advantages for the characterization of molecular interactions and reactions. First, it is 100-1000 times more sensitive than spectrophotometric techniques. Second, fluorescent compounds are extremely sensitive to their environment. Tryptophan residues that are buried in the hydrophobic interior of a... [Pg.266]

FBAs can also be estimated quantitatively by fluorescence spectroscopy, which is much more sensitive than the ultraviolet method but tends to be prone to error and is less convenient to use. Small quantities of impurities may lead to serious distortions of both emission and excitation spectra. Indeed, a comparison of ultraviolet absorption and fluorescence excitation spectra can yield useful information on the purity of an FBA. Different samples of an analytically pure FBA will show identical absorption and excitation spectra. Nevertheless, an on-line fluorescence spectroscopic method of analysis has been developed for the quantitative estimation of FBAs and other fluorescent additives present on a textile substrate. The procedure was demonstrated by measuring the fluorescence intensity at various excitation wavelengths of moving nylon woven fabrics treated with various concentrations of an FBA and an anionic sizing agent. It is possible to detect remarkably small differences in concentrations of the absorbed materials present [67]. [Pg.347]

Vukjovic et al.199 recently proposed a simple, fast, sensitive, and low-cost procedure based on solid phase spectrophotometric (SPS) and multicomponent analysis by multiple linear regression (MA) to determine traces of heavy metals in pharmaceuticals. Other spectroscopic techniques employed for high-throughput pharmaceutical analysis include laser-induced breakdown spectroscopy (LIBS),200 201 fluorescence spectroscopy,202 204 diffusive reflectance spectroscopy,205 laser-based nephelometry,206 automated polarized light microscopy,207 and laser diffraction and image analysis.208... [Pg.269]

Emission-Excitation Matrix (EEM) fluorescence spectroscopy as a nondestructive and sensitive analytical technique was successfully applied in this study to characterize DOM in landfill leachte. The DOM is composed of complex mixture of organic compounds with different fluorescence properties. In particular, the EEM profiles of DOM show two well-defined peaks at Ex/Em=320-350 /400-420 nm, Ex/Em=320-350 /420-450 nm reasonably due to the presence of two different groups of fluorophores. An additional and less intense band at Ex/Em=280-290 /320-350 nm can be assigned to aromatic amino acids and phenol-like compounds. [Pg.308]

Another advantage to examine these polyaers is that characterizations of ablated materials can be Bade possible by fluorescence spectroscopy. Fluorescence is very sensitive, and such surrounding aicroenvironaental conditions around the it -chromophore as polarity and viscosity and chroaophore aggregation can be probed. [Pg.401]

Fluorescence spectroscopy forms the majority of luminescence analyses. However, the recent developments in instrumentation and room-temperature phosphorescence techniques have given rise to practical and fundamental advances which should increase the use of phosphorescence spectroscopy. The sensitivity of phosphorescence is comparable to that of fluorescence and complements the latter by offering a wider range of molecules for study. [Pg.28]

Fluorescence spectroscopy 10 pg ml-1 1 x 1(T4FS 7-60 Sensitive for fluorescent compounds... [Pg.19]

T. Nakashima and A. Fujishima, Highly sensitive analysis of SnO solution interface by internal reflection-fluorescence spectroscopy, Chem. Lett. 1990 (11), 1995-1998. [Pg.340]

More sensitive than ESA is so-called excited state excitation (ESE), by using fluorescence spectroscopy. In this case, the excitation spectrum corresponding to an... [Pg.73]

As the enzyme itself is usually the focus of interest, information on the behavior of that enzyme can be obtained by incubating the enzyme with a suitable substrate under appropriate conditions. A suitable substrate in this context is one which can be quantified by an available detection system (often absorbance or fluorescence spectroscopy, radiometry or electrochemistry), or one which yields a product that is similarly detectable. In addition, if separation of substrate from product is necessary before quantification (for example, in radioisotopic assays), this should be readily achievable. It is preferable, although not always possible, to measure the appearance of product, rather than the disappearance of substrate, because a zero baseline is theoretically possible in the former case, improving sensitivity and resolution. Even if a product (or substrate) is not directly amenable to an available detection method, it maybe possible to derivatize the product with a chemical species to form a detectable adduct, or to subject a product to a second enzymatic step (known as a coupled assay, discussed further later) to yield a detectable product. But, regardless of whether substrate, product, or an adduct of either is measured, the parameter we are interested in determining is the initial rate of change of concentration, which is determined from the initial slope of a concentration versus time plot. [Pg.98]

Ekins, R., Chu, R, and Biggart, E., Fluorescence spectroscopy and its application to a new generation of high sensitivity, multi-microspot, multianalyte, immunoassay, Clin. Chim. Acta, 194, 91-114, 1990. [Pg.27]

Until recently, previous studies for continuous monitoring of hepatic function with ICG utilized the absorption mode. However, new studies demonstrate that the highly sensitive fluorescence technique can equally be used [148-150]. In addition to high sensitivity, in-depth analysis of the emission, excitation and polarization properties of fluorescence spectroscopy furnishes additional functional information about the dye molecule. In this system, the fluorescence profile emanating from the clearance of injected biocompatible dye is monitored with a small photodetector. Fig. 8 shows the in vivo fluorescence detection apparatus developed for continuous monitoring of organ functions [147,148]. [Pg.48]

For the determination of organotin compounds (tributyltin, triphenyltin, triethyltin, and tetra-ethyltin) a MAE is proposed before the normal phase (NP) HPLC/UV analysis [35], In organotin and arsenic speciation studies, hydride generation is the most popular derivatization method, combined with atomic absorption and fluorescence spectroscopy or ICP techniques [25,36], Both atmospheric pressure chemical ionization (APCI)-MS and electrospray ionization ESI-MS are employed in the determination of butyltin, phenyltin, triphenyltin, and tributyltin in waters and sediments [37], A micro LC/ESI-ion trap MS method has been recently chosen as the official EPA (Environmental Protection Agency) method (8323) [38] it permits the determination of mono-, di-, and tri- butyltin, and mono-, di-, and tri-phenyltin at concentration levels of a subnanogram per liter and has been successfully applied in the analysis of freshwaters and fish [39], Tributyltin in waters has been also quantified through an automated sensitive SPME LC/ESI-MS method [40],... [Pg.539]

Tunnelling electrons from a STM have also been used to excite photon emission from individual molecules, as has been demonstrated for Zn(II)-etioporphyrin I, adsorbed on an ultrathin alumina film (about 0.5 nm thick) grown on a NiAl(l 10) surface (Qiu et al, 2003). Such experiments have demonstrated the feasibility of fluorescence spectroscopy with submolecular precision, since hght emission is very sensitive to tip position inside the molecule. As mentioned before the oxide spacer serves to reduce the interaction between the molecule and the metal. The weakness of the molecule-substrate interaction is essential for the observation of STM-excited molecular fluorescence. [Pg.158]

Fluorescence spectroscopy has sensitivity as high as up to the single-molecular detection level. However, fluorescence detection of has been usually unsuccessful by their... [Pg.685]

Generation of M in solution includes one-electron transfer and should be accompanied with ion pair formation, e.g., M -M, M -anion, etc. in any processes. Absorption spectroscopy of M are not sufficiently sensitive to distinguish ion pair from free ion, while fluorescence spectroscopy is enough sensitive. The delay time (10-1000 nsec) decreased rapidly during PR-LFP of TMB in DCE... [Pg.686]

Fluorescence spectroscopy is probably the most sensitive method for determining the purity of an IL. It has been observed that the fluorescence of ILs can be effectively reduced to zero by a systematic purification of precursor salts. For the lowest fluorescence response, particular care should be taken while carrying out s)mthesis. For convenience it is possible to judge the degree of fluorescence impurity in the IL by exposing a sample to the UV light from a hand scanner at 380 nm. If the IL has significant impurities, it will fluoresce visibly [40]. [Pg.303]


See other pages where Fluorescence spectroscopy sensitivity is mentioned: [Pg.549]    [Pg.136]    [Pg.294]    [Pg.3]    [Pg.489]    [Pg.531]    [Pg.443]    [Pg.104]    [Pg.740]    [Pg.94]    [Pg.351]    [Pg.438]    [Pg.404]    [Pg.185]    [Pg.223]    [Pg.285]    [Pg.35]    [Pg.204]    [Pg.85]    [Pg.155]    [Pg.47]    [Pg.289]    [Pg.86]    [Pg.551]    [Pg.240]    [Pg.654]    [Pg.696]    [Pg.184]    [Pg.461]   
See also in sourсe #XX -- [ Pg.2 , Pg.362 ]




SEARCH



Fluorescence sensitivity

Fluorescence sensitization

Fluorescence spectroscopy

Fluorescent spectroscopy

© 2024 chempedia.info